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ABSTRACT

Conncctionist models provide rich and trainable control structures for generative algorithms. In this report we describe
how multilayer ncural nctworks trained by back-propagation can be effectively uscd o transform performance gestures into
control parameters. We have cnhanced the MAXNet ncural network simulator by giving it the capability to construct
nctworks from a graphical specification. This capability facilitaics experimenting with nctworks with architectures richer
than the conventional feed forward fully connected networks. With this new description language, we have built controller
nctworks based on forward models for control. Forward modcling derives the controller by back-propagating crrors through
an cmulator, thus reducing the scarch space from that of a direct inverse technique. We show how a user can map parameters
obtained from a personalized gesture space to the control parameters of a synthesis enginc. We discuss these forward
modcling network architectures and training strategics. We also wish to emphasizc that intelligent preprocessing of gestural
data and perceptually based representations of sound arc critical determinants of the performance of such nctwork based
control structures. Our cxamples include live performance control where the performer makes gestures in a low dimensional
perceptually based timbre space and controls cither FM, Resonant Synthesis, or Waveguide Synthesis.

1. INTRODUCTION

Advances in modern control theory suggest that ncural networks are cffective for the identification and control of
nonlincar systems (Narcndra & Parthasarathy 1990). This report cxplores some of the general features of musical control
systems based on ncural networks that can be trained to respond in specific ways to specific gestures of the performing
musician.

1.1 A control theory framework

In our view, controllers map musical intentions to the parameters of a synthesis or compositional algorithm. To place things
in a practical context, we present a bricf overview of the components of a control system involved in an actual performance.,
The performer interacts with scnsors that capture {eaturcs of his gestures. Thesc are transformed into system parameters that
control the musical process, be it synthesis or a more temporally cxpansive procedure. At the control level concerned with
the synthesis of sound the performer behaves much like a traditional instrumentalist whereas the control of compositional
procedures is morc akin to driving, guiding, or conducting. The general control paradigm in Fig. 1 shows that a significant
part of the control system lics within the motor program of the performer. In fact, the development of a mapping of musical
intention 1o instrument control paramecters traditionally requires large doses of motor skill lcarning and, as yet, has not been
facilitated by adaptive automatic control mechanisms within the instrument itsclf. In this report we will concentrate on the
development of control components contained within the music making device. We will assume that proper attention has
been paid o the ergonomic aspects of the gestural interface and will examine the problem of mapping the data from the
gesture sensors o the parameters of the gencrative algorithm. We hasten to point out that any real system put to use for
musical performance will involve motor learning. The examples that we have cxamined thus far arc oncs in which the
performer specifics a mapping between intention and his gesturcs. For cxample, the performer could indicate a place in
timbre space with a pointing device or specify the significance of hand movements. Our emphasis here is on the machine
adapting 1o the specified gestures of the performer rather than on the traditional situation of the performer adapting to the
instrument.

The gencerative algorithm typically has a large number of input parameters. This is truc of both synthesis and compositional
procedures. The gestural interface typically supplics fewer parameters and so we require that the controller map from a low
1o a high dimensional space. This low to high dimensional mapping does not nccessarily posce any particular complication
and is a prominent aspect of the computer music medium.

277,


http://cnmat.berkeley.edu/publications/connectionist-models-real-time-control-synthesis-and-compositional-algorithms

The gencrative algorithm itself is most often poorly understood in spitc of the fact that it may be well specificd and
dcierministic. This is due first (o the fact that most complex synthesis and compositional algorithms arc highly nonlincar
dynamical systems. Sccond, outcomes arc evaluated by hearing and so the generative algorithm must be characterized in
terms of how it transforms its control paramcters to perceptually relevant properties. The characterization of the generaiive
system is a system identification problem and, in fact, a modcl of the gencrative sysiem can play a critical role in detcrmining
its controller. In the contemporary control theory literature (Miller et al 1990, Jordan and Rumclhart 1992) this modcl of the
generative component, or plant as it is called, is the forward model. The inverse of the forward modecl is the controller.
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Figurc 1: A gencral control theory framework for computer based musical instrumentation. The notion of
intention can be interpreted as the desired outcome of the generative algorithm.  The cvaluation of the
correspondence between intention and outcome is pereeptual.

1,2, Neural networks and control sysicms

Referring again to Fig. 1, a multilaycr or rccurrent network can be used as the controller and another network can be used as
the forward modecl of the gencerative algorithm.  While our work stresses the use of multilayer networks trained by the back
propagation superviscd lcarning algorithm and its variants (scc (Hertz et al 1991} for a review), other network architectures
and lcarning procedurcs should be cxplored. We have implemented  multilayer and recurrent networks in the MAXNet
ncural nctwork simulator (Lee eral 1991) that runs in the MAX programming cnvironment (Puckette & Zicarelli 1990). The
rcal-time scheduling and the case with which we can introduce ncural networks inlo MAX patches that handle data-
acquisition from gestural input devices and control synthesis running on multiprocessor DSP hardware interfaced directy to
the Macintosh Nu-bus has madc it possible to explorc the use of ncural nctwork control in rcal musically viable live
performance contexts.

1.3, An clementary vowel singer cxample

For purposcs of cxplanation we present a concrete though quite clementary cxample of a model singer that produces vowcls
with articulatory synthesis like that developed by Perry Cook (Cook 1990). As illustrated in Fig. 2, the model singer states
intention by indicating the vowel to the controlicr. The controller configures the vocal tract and operates the articulators (o
producc the acoustic output corresponding to the desired vowel. Evaluation of the performance is carricd out by using a
perceptually bascd norm to measure the difference between the ideal spectrum for the intended vowel and the spectrum of the
synthesized vowel, In this example both the forward model of the vocal tract and the controller arc implemented as fecd-
forward ncural nctworks that learn by back propagation of error. The forward modcl of the vocal tract synthesis procedure is
learned by presenting input-output pairs to a supervised learning procedure. The input o the forward model network consists
of vocal tract configuration paramclers and the corresponding output is a spectrum. The controller is an inverse of this
forward modcl in that it takes vowel specification as input and gencrates the corresponding vocal tract configuration
parametcrs.

There arc two problems that arisc in the determination of the inverse modecl. First, the forward modcl is many-lo-onc in that
there arc diffcrent configurations of the vocal tract that map to the same vowcel spectrum.  Sccond, there is no guarantee that
the sct of vocal tract configurations that map to the same vowel is convex. The many-to-one mapping in the forward modcl
makes it difficult to determinc a unique inverse model. If we were to attempt to determine the controller by direct inverse
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modeling, that is, by training the controller with input-output pairs consisting of spectrum as input and vocal tract
configurations as output, back propagation learning would provide an average of the non-unique vocal tract configurations as
output to a given spectrum input. And since the set of vocal tract configurations may be non-convex, this average vocal tract
configuration will not necessarily be in the set of configurations that produce the given spectrum as output. Back propagating
the error through the forward model goal directs the optimization of the controller (Jordan and Rumelhart 1992).
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Figure 2: Intentions arc specified by passing vowel names to the neural network controller which produces
vocal tract configuration control parameters. A neural network forward model emulates the vocal tract
behavior and is used to generate outcomes that can be matched against the desired outputs or intentions.
The dotted line indicates back propagation of error through the forward model to constrain the controller.

Though we have not experimented extensively, at the time of writing, with neural networks for articulatory control of the

vocal tract, Jordan (personal communication) has obtained impressive results using forward modeling of the sort just
described for the development of an articulatory model of speech production.

2. DETERMINING THE FORWARD MODEL

The musical imagination can effectively be brought into play in specifying the nature of what is to constitute the forward

model of a musical process. The forward model need not have a direct sonic referent like the spectrum in the previous™

example. At CNMAT we have experimented with forward models of rhythm pattern generators that provide perceptually
based metrical abstractions to be evaluated against the same metrical abstractions as input intentions. Music theoretic
concepts were used to characterize how the rhythms would map to the metrical abstractions. We turn now to another form of
the forward model based on the timbre space model.

2.1, Timbr rw ]

Considerable attention has been paid to the psychoacoustics of timbre using geometric models as perceptual spaces
(Wessel 1973, 1985, Grey 1975, Krumhansl 1989). The idea of this approach is to represent the various timbres as points in
some geometric space, typically Euclidean. Proximate timbres in the space sound similar and the timbres that are far apart
sound different. The space is usually generated by using a multidimensional scaling technique (Shepard 1974) that begins
with a matrix of dissimilarity judgments made by comparing the members of all pairs of tones drawn from the set. These
dissimilarity judgments are modeled as distances in the perceptual space and a configuration of timbres is sought that
minimizes an error measure between the subjective dissimilarities and the distances. The musical motivation of this work is
to produce a model of timbre that provides navigational advice about the compositional manipulation of timbre, and guides
the development of a low dimensional control strategy for synthesis by determining the perceptually salient dimensions
common to the set of timbres.  Viewed as a forward model, as illustrated in Fig. 3, a timbre space provides a mapping

between synthesis control parameters and coordinates of a given timbre in the perceptual space. For control of timbre, the
inverse of the forward model is required. That is to say, the musician indicates the intended timbre by specifying its location’
in timbre space and the inverse model or controller gencrates the appropriate parameters for the synthesis algorithm. Tlmbral"

interpolation is thus provided by the controller network.
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1t is helpful to add additional constraints during the training of the controller. A particularly useful additional constraint for
the timbre space controller is maintenance of constant loudness as one moves about.
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Figure 3: A controller based on timbre space as a forward model. Intentions are expressed as coordinates
in timbre space. The crror measure used in training the controller is like that of an auto associator. The
dotted line indicates back propagation of error through the forward model to constrain the controller.
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