http://cnmat.berkeley.edu/publications/design-pen-based-music-notation-system
The Design of a Pen-Based Music Notation System

Annick Leroy, Giovanni Miiller, and Guy E. Gamett

Center for New Music and Audio Technologies (CNMAT)
Department of Music
University of California, Berkeley
1750 Arch Street, Berkeley, CA 94709
(510) 643-9990
annick.leroy@irisa.fr, mueller@cnmat.berkeley.edu, guy@cnmat.berkeley.edu

Abstract

We present the basic design of a music notation system that uses a pen device and handwritten symbols for fast,
flexible input capability. The objective is to rapidly obtain a description of musical ideas that is suitable for
further processing, not only for printing, but for use with a digital composer’s assistant as well as in
representations for synthesis control and performance. In contrast to the mouse, the pen provides more precise
gestures due to the direct feedback from a touch-sensitive display. We focus on a system for composers, not for
engravers: composers are skilled in handwritten notation and editing and need to sketch out musical ideas rapidly
while retaining the ability to make alterations at both local and global levels.

1. Introduction

In a general way, our system can be partitioned into
two interdependent parts: a recognition part, and a
representation part. After describing the system from
the perspective of the user requirements, we will
present the overall system architecture that we think
best fulfills those requirements. After that, we will
describe the representation layer since this is crucial to
understanding the recognition and display mechanisms
which we will describe last.

1.1 User Requirements

The primary requirement is to make entering and
editing music notation simple and fast. Composers and
copyists are skilled in hand-scripted notation and
editing; we wish to provide a tool to use these skills
directly to obtain, ultimately, engraver quality results.

A secondary requirement stems from the fact that
composers often need to sketch out musical ideas
rapidly retaining the possibility of making alterations
at both local and global levels. It should be simple to
say both, “make this F an F-sharp,” and “transpose this
passage in F to F-sharp.”

Third, we want the underlying system to be more than
just a notation system. In this age of electronic
performance, we expect the system to support
performance of notated music via computer and other
electronic instruments including, but not restricted to
MIDI, ZIPI, and other real and non-real-time
synthesis methods. In fact we want the system to
support a variety of notions of score and not just
Common Music Notation (CMN). The underlying
mechanism should be strong enough to support
different user interfaces. It is for related reasons we
believe the editing operations should be focused on the
musical structures and not on the layout properties.

Music Notation

286

Fourth, we want the system to provide full
documentation of the process of composing or
notating. The user should have coherent and usable
access to all sketches and versions of the score.

Fifth, we want the input and editing to largely
correspond to the way we work with paper and pencil.
We do not want automatic behavior to interfere with
user input. For example, on paper a note remains in the
same place on the staff even if the user changes a clef
in front of it. In most computer notation systems, the
note is redisplayed in a new position because its pitch
is thought of as its primary attribute rather than its
position. In this sense it is more *“natural” that entering
or changing a clef with the pen device should not
affect the way the rest of the document looks. We can
state this user paradigm as: “local editing should not
result in global changes.”

Finally, a requirement too often overlooked or at least
too infrequently achieved especially in music
software, we want the whole working environment to
be robust. We don’t want erratic, unpredictable
behavior.

1.2 System Design Issues

The requirements outlined above, though fairly
broadly stated, substantially narrow the choices for
system design. These choices will now be defined and
explained.

We have opted for a pen as the primary user interface
tool largely because it allows users to make the most
of the substantial skills they already posses. Its use is
very simple to understand and should be quicker than
other methods. In this, music notation is very different
from handwriting—whereas most people can learn to
type faster than they write by hand, it is not clear
whether this can ever be the case with music except

ICMC Proceedings 1994

http://cnmat.berkeley.edu/publications/design-pen-based-music-notation-system

possibly the simplest kinds because of the extreme
variety in symbols and ways of joining symbols
together. Opting for a pen based system however,
means we must make a substantial investment in the
design and integration of a very flexible recognizer.
This recognition section will be covered in greater
detail in a later section.

A number of our requirements push us in the direction
of developing a strong music representation at the
heart of our system. For example, since we have made
the requirement to allow global as well as local
changes, and in fact we see global changes as being
generalized to include process oriented modifications
to an existing music document as well, we need to
have a substantial structure underlying what the user
sees. The system can not simply represent graphical
elements but must reify musical concepts at some deep
level. For a second example, since we want to be able
to support more than CMN, we want to be able to
support MIDI and ZIPI and probably other
performance-oriented presentations of the musical
data, the underlying structure must be strong enough
and general enough to include attributes targeted for
these applications. Furthermore, a substantial structure
is necessary to meet the primary goals of supporting a
full-blown CMN and the detailed history we desire.
Finally, we believe that in a system as complicated as
the one we are designing, it is absolutely necessary,
from the software engineering point of view, to have a
very robust architecture with clearly defined
components and communications.

In order to handle the complexity of the overall
system, we have opted for an object-oriented software
model and, what we believe to be one of the most
coherent and flexible architectures for complex user
interface structures, the Model-View-Controller
(MVC) paradigm. These will be very briefly explained
as there is a great deal of literature on them [Goldberg
83].

1.3 Model/View/Controller (MVC) Paradigm

The MVC paradigm is a technique to modularize a
system by dividing a complex user-interface into three
principle components that communicate, as all objects
do in an object-oriented system, by messages. In the
MVC paradigm, the model is an encapsulation of the
basic conceptual structure, the data structures
associated with it, and the functionality; the view is an
encapsulation of all the necessary data and
functionality needed to create some kind of display;
the controller is a means for the user to effect things in
the model—it is often closely connected with the view
because it needs to know, for example, what displayed
object the user was pointing to and only the view
knows what object is where in the view. In an
anthropomorphic sense, there is an object (the model),

ICMC Proceedings 1994 287

a way of looking at it (the view), and a way of
manipulating it (the controller).

2. System Architecture

We apply this paradigm in a straightforward manner to
obtain the following large-scale system architecture.
We have what we call a Notation Layer as the Model;
it is an abstract music representation system. It has
information about note values and timing, for
example. A Layout Layer is the View; it handles the
representation of the page description and layout, and,
ultimately, the display of the state of the Notation
Layer. It includes, for example, relative position
information and page and margin boundaries. Finally,
we have a Recognition Layer as the controller
structure; it receives pen input from the user and
makes a decision about what the input means. It may
ask the layout model for information on what the
spatial environment of a stroke contains, and
eventually it makes a decision and informs the
Notation Layer, “hey, someone just added an eighth
note here!” The Notation Layer, as the Model in the
MVC paradigm, makes the appropriate changes to its
own data and passes a message to the Layout Layer
telling it to update its state.

2.1 Layer Structure

This is, in fact, all there is to the primary system
architecture. However, in sufficiently complicated
systems, such as we have here, each of these parts may
need to be structured in more detail. In practice, often
even the subparts of an MVC structure (that is, the
Model, the View, and/or the Controller) themselves
take on characteristics of embedded MVC structures.
For example, in our case the Layout Layer needs to
contain so much internal structure that is still abstract
in nature (for example, all the pages that are not being
explicitly looked at presently) that it is thought best to
create a quasi-MVC structure to hold the different
components of this one layer. In this more detailed
level of structure (as can be seen in Figure 1.), the
Layout Layer consists of a Layout Model and a Layout
View (and could also, but does not in this case,
consist of a layout controller as well). Its view, the
Layout View, is what actually gets around to
displaying the current page or score area. In the same
manner, the Recognition Layer is actually designed as
a smaller scale MVC structure as well. Its model,
called the Recognition Model, handles the basic
representation of stroke data and the functionality of
the decision making process. Its view, called the
Recognition View handles display of stroke
information (the “ink” on the screen). Its controller,
the Recognition Controller receives input from the pen
and informs the Recognition Model of the pen’s
location. The Recognition Model then updates its
stroke data and informs the Recognition View to

Music Notation

update itself, which it does by displaying the new data
on the computer screen.

this history mechanism to the user input and
recognition is described later in this paper. Now we

[—Recogniﬁon: Recognition
view | controller

v

Recognition model

RecogData II
Layout model
. o — SyncPosH SyncPosl
) ,// e / T :
p v~ 7 T Notation model
otation model
Notation
o Sylnc — Sylnc]
<——— Mvc dependencies Staffinfo | Note | | Note |
Internal dependencies | L
Figure 1.

These layers will be described in more detail below.
For now we turn to another part of the basic system,
the history mechanism.

2.2 History mechanism

One further aspect of this system design is necessitated
by our desire to have a very full history mechanism to
document not only the final state of the notation, but to
record the entire process, including the strokes input,
in such a way that the user can retrieve any previous
state (with some limitations) and create a new
document proceeding from there.

The history mechanism is document oriented, i.e., the
objects which need to be saved are linked into a
“history document”. When the document is being
saved we add a unique identification tag to all its
objects that are newly created, the ones being saved
for the first time. In a second step we store all objects
there were changed since the last save by adding a
time stamp and by making a read only copy. Notice
that all references between objects are stored by the
identification tag, so that the document is self-
contained and it might be externally stored on a file
and read in another context without loss of
consistency.

Any saving step of the document is a snapshot of the
document state at that time. The whole history may be
traversed and the objects may be read but not changed
anymore. In this sense there is no undo operation that
restores a previous state, rather one traverses the
sequence of states starting from the original up to any
point including the current state. The relationship of

Music Notation

288

describe the structure of the layers.

3. Notation layer

The notation layer contains two levels of abstractions
for music representation. The lower level is defined
according to the Smallmusic Object Kernel (SmOKe)
[Pope92], an object-oriented description language for
musical parameters, events and structures. The higher
level of abstraction is represented by the “notation
model”. This is an abstraction derived from CMN that
describes the score only in terms of pitch and timing,
independent of graphic properties. The purpose of the
notation level is to define a thin interface between the
world of musical events and the world of the musical
notation symbols.

The concept of pitch is quite straightforward and does
not need to be handled here.

The concept of timing is much more difficult to handle
than pitch, not only because it is non linear, but
because there are two kinds of timing, one of which is
described for the first time here. First, the “notation
timing” is given by the “timed notation symbols” (i.e.
notes, chords, rests). In the score almost all vertically
aligned symbols correspond to the same time. In order
to keep this syncronicity in the model we define as a
“sync” the collection of all synchronous elements.

On the other hand the timed symbols (notes, rests) are
grouped into horizontal sequences called “parts” (e.g.,
voices). Basically, a piece is a sequence of syncs
which refer to notation symbols that may be collected
in parts. See Figure 2.

ICMC Proceedings 1994

The sequence of syncs defines a notation timing grid,
according to the conventions of CMN (Figure 2. upper
scale). This grid is computed by an algorithm based on
the minimal timing differences between the non
synchronous timed notation symbols [Miiller 90].
Many of the non-timed notation symbols, such as
dynamics and articulations, are defined as relations to
timed symbols and therefore their position is well
defined. There is another class of symbols, however,
which cannot be defined in this way.

Notation timing

Sync 0 2/4 , 4/4 , 8/4
~N P! .
F——Heo Part 1
o H —Part 2
i —_
__—905 0.7

Relative timing
Figure 2.

The use of notation timing is common in music
notation systems, but it leads to many problems when
we try to define the position of certain notation
symbols (such as grace notes and dynamic hairpins)
which are not synchronous with timed symbols and do
not imply a definite time at all. In fact, the timing and
spacing of these symbols is not defined by notation
value and place in a sequence (as it is for a sequence
of quarter notes, for example), rather it is defined by
their relative graphic placement in the score. For this
purpose we define a second kind of timing, which we
call “relative timing.” Relative timing is defined in a
qualitative way (i.e., before or after a sync) or in a
quantitative way by the proportional position between
two syncs (see Figure 2 lower scale). In the figure, the
first hairpin crescendo keeps its relative temporal
position (reaching its maximum at about the fourth
"quarter of the measure) even if we delete the note at
the timing position 2/4. The coordination algorithm
works by recomputing the new proportional position
when a sync is deleted. Therefore the new proportional
position of the crescendo will be as in the second
measure. In the case of the relation “before” (i.e. grace
notes) the element remains before the sync it is
attached to yet after any other timed notation symbols
that may be added before it in sequence. In this way a
grace note remains at the same. position relative to its
sync even if notes are added to the part before the

sync.

4. Layout layer

The layout model transforms the pitch and timing
coordinates of the notation model to the graphic
coordinates of the display. It contains the data to
describe the location of all the notation symbols on a
page. Typically the size of the staff (and therefore of
the notes), the size and the margins of the page are

ICMC Proceedings 1994

described in the layout. On the other hand also the
local data such as the positions of the syncs in the page
are necessary. This is because the layout model must
not only be able to display notation symbols, but must
be able to return which elements are located at some
position on the page.

5. Recognition Layer

The Recognition Layer consists, as described above,
of three basic components: first there is the
Recognition View. This view displays the user’s pen
strokes on the display surface. This display is
conceived of as a transparent “sketch sheet” that is
overlaid on top of what is currently displayed by the
Layout Layer. When starting a new composition, for
example, the Layout Layer may be empty except for
staves that have been previously defined with a staff
system template. The sketch sheet is empty, the staves
are drawn (under it) by the Layout Layer. The user
begins entering strokes which are displayed by the
Recognition View as “ink” on the sketch sheet—thus
overlaying the layout staves.

The second component of the Recognition Layer is the
Recognition Controller. This is the mechanism by
which user commands and strokes enter the system.
The Recognition Controller receives information from
the pen device; it makes Pen-up, Pen-down decisions
and hands over to the Recognition Model the time-
stamped pen location data. In order to simplify the
recognition task, it is up to the user to decide when
sufficient information has been presented to begin a
recognition (indicated by clicking the pen in a
“button,” for example). By making the user decide
when to attempt recognition we avoid the problem of
the recognizer trying to make a decision based on a
partially defined symbol (such as a filled note head
without a stem). This simplifies the task of the
recognizer. We also leave it up to the user to “accept”
the results of the recognition or go back and clean up
if something was not clear. In addition, we wait until
the user accepts the recognizer’s results to define the
boundary of a sketch to be preserved by the history
mechanism. That is, the user can make all kinds of
strokes with erasures and other changes, but only
when the recognition is accepted does the current state
of the Recognition View get stored in the history and
the Notation Layer get notified of the changes. This
simplifies the history mechanism as well.

The third, and by far most complicated, part of the
Recognition Layer is the Recognition Model. It
handles the inputs from the Recognition Controller
maintaining and updating the current state: including
the current stroke data, the current editing mode, etc. It
also communicates with the other two system layers to
gather a context for the recognition. When the
Recognition Controller informs the Recognition
Model that the user is requesting recognition, the

289 Music Notation

Recognition Model informs the Recognizer to begin
operating on the current stroke and context state stored
in the Recognition Model. Though this is a
simplification of how the overall system functions, it
is the basic story. We can now present a few details
concerning the Recognizer itself.

6. The Recognizer

Musical handwriting has a lot of particularities which
-distinguish it from text handwriting. These
characteristics strongly influence the recognition
method as well as the data structure:

- There are a minimum of sixty different symbols.

- The position on the staff and the size helps
comprehension.

- Music has a very precise grammar.

- Strokes are not written in a left to right order: the
user will often write all the note-heads before
the stems in a tuplet, go back to put in slurs,
etc. It is thus necessary to wait until the user
is finished with a coherent part to exploit it.

- The symbol combinations are infinite (the
presence or absence of an alteration, of a dot

-or an accent varies, as does the stem length,
and the number of ledgerlines above or below
the staff).

- There are many ways for grouping notes:
beamed, slurred, tied, in chords or in voices.

- Interpretation follows time order which is from
left to right, but each note can be bound on
top or underneath to interpretation symbols
(dynamics, articulations, etc.).

- Synchronous notes are vertically aligned either
in chords or in voices (unless they are a step
apart, in which case they must be offset for
legibility), generally on the same staff for an
instrument, except for keyboards, and on
several staves for orchestrations.

- Some symbols have fixed size (relative to the
staff size), but others are expandable like note
stems.

- Some symbols are related to one staff but others
cover several staves (such as cross-staff
beaming in keyboard parts).

- Some symbols are composed of a single stroke
(G-clef or a measure line), while others are
composed of several strokes (a quarter-note
or an F-clef).

- Depending on the writer, a given symbol might
be composed of one or several strokes (an
eighth-note can be written with one or two
strokes).

Music Notation

290

- Depending on the context a given writer will
form a symbol differently (a quarter-note
might be composed of one stroke when
isolated but of two when in a tuplet).

- Musical handwritings are as diverse as text
handwritings. A simple quarter note can be
written from top to bottom or the opposite,
the head might be shaped like a dot, a spiral,
a line, or a big scribble.

- Several distinct elements of a tuplet can be
represented by one stroke, for example many
writers use one stroke for the stems and the
bar of a duplet.

- Composers are used to creating new symbols
and modifying the existing syntax.

- A certain shape of stroke might belong to
different symbols (the dot appears in dotted
notes, in an F-clef, in bar-lines, etc.).

- There is often no more space between two
different symbols than between the strokes of
the same symbol (the space between a note-
head and its stem will often be as wide as the
space between two notes).

- Symbols overlap in width and height (a tuplet
with one or several beams across the notes,
accents above or below the notes, notes of
different voices overlapping, etc.).

6.1 . Remarks about on-line musical handwriting

It is important to retain the timing information when
the pen data is made for three reasons: first, since a
stroke is defined simply as any pen data between a pen
down and a pen up, we can easily segment the data
into separate strokes and distinguish overlapping
strokes. Second, with the time-stamped information
we know how each stroke was drawn. Third, we can
exploit the order in which strokes were written.

6.2 . Recognition algorithm

The previous two sections show where the problems
are, that is, reordering the symbols from left to right,
grouping them into musical entities, and segmenting
or recognizing strokes representing different elements
of a symbol. In no way is it possible to have a
classifier provide one label per symbol, there are far
too many and it is sometimes impossible to distinguish
them without a context. This is why we chose an
analytical approach with several levels of recognition.
In a prototype, we have shown that the algorithm
works at least on a limited set of symbols. We are now
gathering data to train the recognizer on a larger set.

ICMC Proceedings 1994

We use a bottom-up approach summarized as follows:
- stroke labeling

We use a TDNN (Time Delay Neural Network)
[Guyon, et al, 1991] to provide a list of labels for each
stroke (see Figure 3, step 2). These labels can be
shapes (vertical line, dot, etc.) or symbols (G-clef,

- building relations

It is at this point that we build up relationships
between the above musical units, for example, we
determine tuplets or the binding of slurs with note

groups, etc.
Now we have generated a set of high level hypotheses

1. Strokes entered

[@R WA with the pen
o) -) 2. Stroke segmentation
o NN
\) C:))) 3. Possible elementary
D o = | o symbol groupings
.:_J))) Q)) 4. Possible musical
° < e ° “sentences” and
t i — corresponding
—1— ||| === layout
Figure 3.

sharp, etc.). The labels are eventually disambiguated
using global features such as the size or the position on
the staff or the distance to other symbols.

- symbol grouping

We next group the strokes into elementary music
symbols using a music symbol graphic grammar.
These elementary symbols are notes, alterations, clefs,
etc. (see Figure 3, step 3). For each symbol, a set of
rules describes the position of the strokes relative to
one another with a distance tolerance. These distances
can be leamned and adapted to a user.

From a few strokes we can build several different
elementary notation symbols. In Figure 3, step 3, for
example, we see various hypotheses for the few
strokes entered.

- validation

We next validate these first hypotheses using a symbol
classifier, such as a TDNN. This gives us probabilities
for the symbols. For example, if the nearly filled circle
(third box from the left in step 2) is notehead size, the
probability of it being an. augmentation dot is
decreased and the probability of it being a notehead is
increased.

- high-level grouping

Then we group the elementary symbols into musical
units, for example, we connect an alteration to the
following note, a dot to a previous note, etc.

ICMC Proceedings 1994

291

based on the strokes. We must pick a set of the best
ones (in term of probabilities). This is how we
proceed:

- sentence construction

We construct all the possible musical “sentences”
using all the strokes only once and compute their
associated probabilities (see Figure 3, step 4).

- selection

It is now possible to select the most probable sentence
and present it to the user. If the choice is accepted, it is
passed on to the Notation Level and propagated
through the system resulting in the recognized
symbols being displayed on the screen.

6.3 . Learning

TDNN are well suited for on-line recognition
especially since they offer an adaptation capability as
well ‘as the ability to introduce new symbols. The
network performs feature extraction which is followed
by a classification step [Guyon, et al. 1991]. The
learning phase needs a lot of data and gathering them
is a difficult task. We need skilled and patient people.

We cannot ask composers or musicians to decompose
a symbol into strokes in order to label them, it would
be too boring even for very patient ones! As
mentioned before, the number of symbols is quite high
and the combinations unlimited. So we need to limit

Music Notation

the data collected to very significant samples and
extrapolate.

We need to be able to label any stroke, to know the
distance and position of one stroke relative to the
others in a symbol. We also need to train on some
elementary symbols and learn the distances and
relative positions of these symbols in groups and
relations.

The examples we have designed are composed of
several symbols, this obliges us to do a preliminary
learning on elementary symbols. After this, the
learning algorithm for the sentences is identical to the
recognition algorithm with a few differences :

- The stroke labels are provided using an a priori
description of the elementary strokes.

- Large a priori distances are chosen’ providing more
hypotheses.

We match the possible sentences with the solution and
associate a label with each stroke, record the distances
and associate groups of strokes with elementary
symbol labels.

This phase has not been implemented yet, since we do
not have enough data. We have not trained a dedicated
music recognizer, but have used the adaptation
capabilities of an existing one in order to introduce the
musical elements.

6.4 . Editing

Editing with a pen offers a lot of possibilities. It allows
us to use quick, natural gestures to erase, select, or
move a symbol. These gestures can eventually be
defined by the user and associated with existing
commands. Because the number of symbols in a music
editing system is large, and they can occur in varied
and complex contexts, it is best to use separate
recognizers for the different tasks, and different
editing modes for the music symbols and for the
command gestures. The modes we use are similar to
the command mode and the insertion mode in many
text editors.

There are three basic editing modes we plan for: first,
straightforward input of the stroke information.
Second, simple editing of that stroke information prior
to recognition. This is to enable the user to clean up
minor slips of the pen, so to speak. The third activity is
editing already recognized symbols. Since we have a
transparent sketch sheet overlaying the display created
by the Layout Layer, all of these activities appear to
the user in a uniform manner. That is, the user makes
strokes of various kinds on the sketch sheet. In the first
mode we simply input the strokes and pass them to the
Recognition Model. In the second mode (possibly
initiated by touching an “eraser” button on screen, for
example) we allow the user to select any stroke and
delete it or move it. We have to be careful not to allow

Music Notation

292

partial erasure of strokes because this adds too much
complexity to the data representation. In the third
mode, the user sees the fully recognized symbols
displayed by the Layout Layer and can make gestures
(on the overlying sketch sheet) to select, cut, copy, and
paste. In this mode the user is manipulating higher
level objects than simple strokes.

7. Conclusions

We have described in some detail the overall system
architecture and the principle design criteria for a very
sophisticated music editing tool. The recognition
algorithms have been tested in simplified form using a
network designed for text recognition. We are
currently prototyping the Notation and Layout Layers
in Smalltalk. In the near future we will add a TDNN to
our prototype and begin constructing the recognizer
and editing functionality. Our prototypes lead us to
believe we are on the right track.

8. References

{Goldberg 83] Goldberg, Adele, and David Robson.
1983. Smalitalk-80: The Language and Its
Implementation. Addison-Wesley. Menlo Park.

[Guyon 91] Guyon, L. and Albrecht, P. and Le Cun, Y.
and Denker, J. and Hubbard, W. 1991. “Design of a
Neural Network Character Recognizer for a Touch
Terminal”. Pattern Recognition, February.

[Leroy 94] Leroy, Annick. 1994 “A Pen Based Music
Editor,” in Fundamentals in Handwriting Recognition.
Sebastiano Impedovo, Ed. Springer-Verlag .

[Miiller 90] Miiller Giovanni. 1990. Interactive Music
Notation Editing, Ph. D. Thesis, ETH Ziirich.

[Pope 92] Pope, Stephen Travis, et al. 1992.
“Smallmusic Objet Kernel: A Music Representation,
Description Language, and Interchange Format.”
Document named “OOMR.ps.Z” available via Internet
file transfer from the server “ccrma-ftp.stanford.edu”
in the directory “pub/st80.”

ICMC Proceedings 1994

