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 The ZIPI Music

 Parameter Description
 Language

 ZIPI's Music Parameter Description Language
 (MPDL) is a new language for describing music. It
 delivers musical parameters, such as articulation
 and brightness, to notes or groups of notes. It in-
 cludes parameters that are well understood and
 universally implemented, such as loudness and
 pitch, and supports parameters that should be
 more common in the future, such as brightness
 and noise amount. A large number of parameters
 remain unspecified, thus ensuring expandability
 and flexibility. The MPDL is just one of ZIPI's ap-
 plication layers; others will include MIDI, data
 dumps, and digital audio.

 This article does not address any of the low-
 level networking issues associated with ZIPI. We
 will assume that ZIPI's lower levels deliver arbi-

 trary-sized data packets from any device on the
 network to any other device on the network; this
 article describes how to transmit music data via

 those packets. This application layer could run
 equally well on some other lower network layer,
 such as Ethernet or FDDI.

 ZIPI's Music Parameter Description Language
 was designed by Keith A. McMillen, David Wessel,
 and Matthew Wright.

 The Shape of MPDL Packets

 Figure 1 shows the format of MPDL packets. The
 low-level network that carries the MPDL packets

 will impose some overhead bytes; this will in-
 clude a network address indicating which ZIPI
 device should receive the packet. The other over-
 head bytes depend on the particular network that
 carries MPDL; we will not discuss the details
 here. Note that overhead bytes are at the begin-
 ning and/or the end of a network packet, but the
 MPDL data are contiguous. The MPDL data con-
 sist of a note address followed by an arbitrary
 number of note descriptors; these are described
 in the sections below.

 Address Space

 When you send a message, such as "become
 louder," you also need to specify what it is that
 should become louder. We call this "what" the ad-

 dress of a message. In MIDI, you might send con-
 tinuous controller number 7 (which typically
 means volume) to channel 3; the address of the
 message is thus "channel 3." If you want to send a
 MIDI message to a single note, rather than to an
 entire channel, you must name that note by giving
 its pitch as well as its channel, as in, "apply
 aftertouch to middle C on channel 2; release the
 G above middle C on channel 1."

 One weakness of MIDI is that there are many
 musical situations that are awkward to express
 when a note's address corresponds directly to its
 pitch. For example, a note's pitch might change
 over time, or there might be two notes played on
 the same instrument with the same pitch. There-
 fore, in MPDL, notes have individual addresses
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 Figure 1. Format of ZIPI
 MPDL packets.

 Figure 2. MPDL's address
 space hierarchy.
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 that are unrelated to their pitch. An MPDL note
 number is simply a number used to identify that
 note; any MPDL note number can have any pitch.
 MIDI's address space is organized as a two-level

 hierarchy-notes within channels. It is sometimes
 useful, however, to control groups of groups of
 notes, rather than just groups of notes. For this
 reason, MPDL's note address space uses a three-
 level hierarchy. Our names for the layers of the hi-
 erarchy fit an orchestral metaphor; there are notes
 within instruments, and the instruments are
 grouped into families. (One might ask why we do
 not have a four-level hierarchy or even a general
 n-level hierarchy. Such schemes take up synthe-
 sizer resources, so we have tried to balance gener-
 ality with ease of implementation.)

 Another weakness of MIDI is that each kind of

 message must be addressed either to an entire
 channel or to a single note, but not both. For ex-
 ample, it is impossible to individually pitch-bend
 one of the notes of a MIDI channel; any pitch-bend
 information will affect all of the notes sounding
 on that channel. Pan, volume, and any other "con-
 tinuous controller" data must also apply to an en-
 tire channel. Likewise, other MIDI messages, such
 as note-on, are always per note, so there is no way
 to articulate an entire chord with a single message.
 In general, one would like to be able to send any
 control signal either to a particular note or to a
 group of notes. Therefore, in MPDL, any message
 can be addressed to any level of the hierarchy. For
 example, a pitch message could go to a single note,
 a note release message could go to all of the notes
 of an instrument, and a loudness message could go
 to an entire family.

 There are 63 MPDL families, each of which has
 127 instruments. Each of these 8,001 MPDL instru-
 ments has 127 notes, for a total of 1,016,127 MPDL
 note addresses. This hierarchical organization is
 shown in Figure 2. Families, instruments, and notes
 are numbered from 1, not 0. There is also a way to
 send a message to all families. This is not a fourth

 level of the hierarchy, but rather an abbreviation for
 sending the same message to each of the 63 fami-
 lies; its effect is exactly the same as if the message
 were sent 63 times. An instrument belongs to ex-
 actly one family and cannot change its family. The
 orchestral metaphor is just a metaphor; the purpose
 of an MPDL address is to specify uniquely the note
 or group of notes to which a message applies.

 The device sending the note information must
 keep track of which notes are sounding and which
 are not, so that it can update parameters of already
 sounding notes. The device receiving the note in-
 formation, of course, will not be capable of
 1,016,127-note polyphony, so it must manage the
 allocation of the available synthesis resources.
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 (Nor will it be capable of storing parameters for
 1,016,127 different notes. It is expected that ZIPI
 controllers will, in practice, only use a small sub-
 set of the address space; algorithms can take ad-
 vantage of that expectation to store and record
 parameter values very quickly and without using
 very much memory.)

 Each ZIPI device has its own address space; all
 of the families, instruments, and notes just dis-
 cussed are within a single ZIPI device. In addition
 to the note address contained in the MPDL packet,
 ZIPI packets also include a network address that
 indicates which device should receive the MPDL

 message. Delivery of the MPDL packet to the ap-
 propriate device is handled by the network levels
 below MPDL.

 Controlling Musical Instruments

 Musicians will typically set up each MPDL instru-
 ment as 127 voices of a particular timbre. (In a
 sense, an MPDL instrument configured in this way
 is like a MIDI channel, which is always associated
 with a single "patch" or "preset.") Messages sent
 to this instrument will influence all of the notes

 played by the instrument, yet other messages can
 be addressed to individual notes within the instru-

 ment. For example, one could "pitch-bend" all of
 the notes played by a given instrument by sending
 a pitch message to the instrument, yet an indi-
 vidual note can be bent by sending a pitch message
 to that note.

 Furthermore, it sometimes makes sense to group
 collections of instruments to be controlled to-

 gether. To create a ZIPI orchestra, we might put
 all of the strings in one family, the brass in an-
 other, and woodwinds and percussion instruments
 in two more. In the string family, we would have
 instruments for first violins, second violins, vio-
 las, cellos, and basses. Each string of each of the
 violas would be a note. Table 1 shows how this

 might be set up.
 Because commands can be issued to control each

 level of the hierarchy, this setup gives the user a
 conductor's control over the orchestra. The string
 family can be made louder and brighter. The

 Table 1. The Address Space for a ZIPI Orchestra

 Family 1: Strings
 Instrument 1: First violins

 Instrument 2: Second violins

 Instrument 3: Violas

 Note 1: C string

 Note 2: G string

 Note 3: D string

 Note 4: A string
 Instrument 4: 'Cellos

 Instrument 5: Basses

 Family 2: Brass

 Family 3: Woodwinds
 Instrument 1: Flutes

 Instrument 2: Clarinets

 Instrument 3: Oboes

 Instrument 4: Bassoons

 Family 4: Percussion

 woodwinds can all be panned slightly to the left.
 Within the woodwind family, individual instru-
 ments can be addressed; for example, the oboes
 can get quieter while the clarinets overblow.

 Musical Control Parameters

 After the note address has been chosen, a ZIPI
 packet may contain any number of note descrip-
 tors intended for that address. A note descriptor
 gives a new value for a parameter, such as "pitch
 is B flat 2" or "pan hard left." The note descriptor
 consists of a note descriptor identifier (ID), which
 indicates which parameter is being updated, and
 some number of data bytes, which give the new
 value for that parameter.

 Tables 2 through 6 list the currently defined
 note descriptors. We expect to define a few more
 note descriptors before completing the specifica-
 tion of the MPDL, but we will leave at least half of
 them explicitly undefined (Zicarelli 1991). The in-
 terpretations of these messages are described in

 54 Computer Music Journal
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 Table 2. Synthesizer Control Parameters

 No. of Data Bytes ID (Hex) Meaning Default Combining Rule

 1 01 Articulation See below "And"

 2 40 Pitch Middle C Add (see below)
 4 80 Frequency in Hz Middle C Overwrite
 2 41 Loudness Mezzo forte Multiply
 2 42 Amplitude Midscale Multiply
 1 02 Brightness Midscale Multiply
 1 03 Even/odd harmonic balance Midscale Multiply
 1 04 Pitched/unpitched balance Midscale Multiply
 1 05 Roughness Midscale Multiply
 1 06 Attack character Midscale Multiply
 1 07 Inharmonicity (signed) 0 Multiply
 1 08 Pan left/right Center Multiply
 1 09 Pan up/down Center Multiply
 1 OA Pan front/back Center Multiply
 2 43 Spatialization distance 10 meters Multiply
 1 OB Spatialization azimuth angle Forward Add
 1 OC Spatialization elevation angle 0 Add
 2 44 Multiple output levels Midscale Multiply
 2 45 Program change immediately 0 (silence) Overwrite
 2 46 Program change future notes 0 (silence) Overwrite
 1 OD Timbre space X dimension 0 Add
 1 OE Timbre space Y dimension 0 Add
 1 OF Timbre space Z dimension 0 Add

 Table 3. Higher-Order Messages

 No. of Data Bytes ID (Hex) Meaning Default Combining Rule

 11 CO Modulation info block None See below

 3 81 Modulation rate 0 See below

 2 47 Modulation depth 0 See below
 n C1 Modulation table N/A N/A
 n C2 Segment info block None See below
 n C3 Segment table N/A N/A

 the sections below. The last column of each table,
 the "combining rule," indicates the way that val-
 ues of these parameters interact when sent to dif-
 ferent levels of the address hierarchy; this is
 described in the section, "How the Levels Inter-
 act," below. Note descriptor ID zero is illegal.

 ZIPI instruments are not required to respond to
 every one of these messages, although they are en-
 couraged to respond to as many of them as pos-
 sible. A note descriptor's byte length is encoded as
 part of the ID number, therefore, receiving synthe-
 sizers can ignore note descriptors that they do not
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 Table 4. Housekeeping Messages

 No. of Data Bytes ID (Hex) Meaning Default Combining Rule

 1 10 Allocation priority 0 Multiply
 3 82 New address N/A N/A
 n C4 Overwrite N/A N/A
 n C5 Query N/A N/A
 n C6 Query response N/A N/A
 n C7 Text/comment N/A N/A

 Table 5. Time-tagging Messages

 No. of Data Bytes ID (Hex) Meaning Default Combining Rule

 4 83 Time tag N/A N/A
 4 84 Desired minimum latency 0 N/A

 Table 6. Undefined MPDL Synthesizer Control Parameters

 No. of Data Bytes ID (Hex) Meaning Default Combining Rule

 1 11-1F Undefined 1-byte controllers Undefined Undefined
 2 48-5F Undefined 2-byte controllers Undefined Undefined
 3-4 85-9F Undefined 4-byte controllers Undefined Undefined
 n C8-DF Undefined n-byte controllers Undefined Undefined

 implement, skip the correct number of bytes, and
 then examine the next note descriptor in the
 packet.

 Logically, all of the note descriptors in a single
 MPDL packet apply to the same instant of time.
 This means that the order of note descriptors
 within a MPDL packet does not matter.

 Articulation

 If the note descriptor ID is articulation, the two
 high-order bits of the data byte specify one of the
 three articulation types that are defined in Table 7.
 Trigger messages start a note; the new note will
 have any parameters that were set for that note be-
 fore the trigger message was sent. Pitch and loud-
 ness are not part of the trigger message, so before
 sending the trigger message, or in the same MPDL
 packet as the trigger message, you should set pitch

 Table 7. MPDL Articulation Types

 High-Order Bits Articulation Type

 11 Trigger
 10 (Not used)
 01 Reconfirm

 00 Release

 and loudness to the desired levels. Remember that

 the order of note descriptors within an MPDL
 packet does not matter, so pitch, loudness, and
 trigger could come at any position in the packet.

 The note then sounds until a release message is
 received. If a new trigger message comes before the
 release message comes, the note reattacks with no
 release. This is useful for legato phrasing. Figure 3
 shows what might happen to the amplitude of a
 tone as a note receives two trigger messages and
 then a release message.
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 Figure 3. Amplitude of a
 tone being articulated by
 MPDL.

 , Trigger Trigger Release
 " (note sounds) (note reattacks) (note decays)

 time

 A note retains its parameters after a release mes-
 sage; receipt of a new trigger message will articu-
 late a new note with the same parameters as
 before. (The section below on the "Allocation Pri-
 ority" message describes when a note loses its pa-
 rameters.)
 Keep in mind that the default timbre is silence,

 so unless you have sent a program change message
 that affects a note, triggering it will have no effect.
 The default pitch for a note, i.e., the pitch of a
 note that has never had its pitch set, is middle C,
 and the default loudness is mezzo forte, so if you
 set the timbre of a note and trigger it, the synthe-
 sizer will play a mezzo forte middle C.
 The reconfirm message is a reminder from the

 controller that it thinks the note should still be

 sounding. It is not needed under most circum-
 stances because notes that have been triggered but
 have not yet been released are assumed to be still
 sounding. In cases of network failure, however,
 this message can be used to reestablish the notes
 that should still sound. If a network failure occurs,
 all controllers should reconfirm all sounding notes
 to the synthesizers. Synthesizers that do not re-
 ceive a reconfirmation within a certain amount of

 time should shut off those notes, assuming that
 the release message was lost.

 These three messages can be understood in
 terms of the gate and trigger bits that were used to
 articulate synthesizers in the "old days." The
 high-order bit is like the trigger bit, and the next
 bit is like the gate bit. Thus, trigger means assert-
 ing both the gate and trigger bits, release means
 deasserting the gate bit, and reconfirm is like as-
 serting the gate bit but not the trigger bit.

 Table 8. Types of Release Messages

 Low-Order Bits Behavior

 000001 Release the note naturally
 000010 Instantly silence the note
 000011 Release the note naturally,

 unless it is still in the attack

 portion of the tone, in which
 case complete the attack
 portion and then release
 naturally

 The remaining 6 bits of the articulation data
 byte specify exactly what kind of articulation oc-
 curs. In music, "articulation" can mean a lot more
 than "on and off." There are a large number of in-
 strument-specific articulation styles, e.g., ham-
 mer-ons for guitar, lip slurs for brass instruments,
 and heavily tongued attacks for reed instruments
 (Piston 1955; Blatter 1980). The problem with en-
 coding these articulation types is that they are
 meaningful only in the context of certain instru-
 ments; it is difficult to say how to implement a
 hammer-on on a clarinet. Therefore, we are work-
 ing to define abstract articulation categories, ex-
 pressed in a way that does not refer to a particular
 instrument. We hope that these will be in a future
 version of the MPDL as the possible values for the
 remaining 6 bits.

 For the release message, we have specified three
 possible behaviors, as shown in Table 8.

 Controlling Pitch

 In MIDI, pitch is specified by key number, which
 in practice almost always maps to equal-tempered
 semitones. For finer resolution, e.g., to convey vi-
 brato or pitch-bend or to use alternate tunings, it
 is necessary to use a pitch-bend controller, which
 provides an additional 7 or 14 bits of precision. At-
 tempts have been made to retrofit a better tuning
 system onto MIDI (Scholz 1991), but nothing has
 been officially adopted (Rona 1991).

 In MPDL, pitch information is given by a 16-bit
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 logarithmic pitch word. The first 7 bits are the
 nearest MIDI note number, and the remaining 9
 bits are fractional semitonal values in units of

 about 0.2 cents. The binary word nnnn nnnl 0000
 0000 is equal to MIDI note number nnn nnnn. The
 word nnnn nnn0 00 00 0000 is MIDI note nnnn

 nnn, a quarter tone flat, and nnnn nnn 1 1111 1111
 is MIDI note nnnn nnn, a quarter tone sharp. (The
 rationale is that MPDL-to-MIDI pitch conversion
 thus requires truncation instead of rounding.)

 Frequency in Hz is an alternate way to specify
 pitch, as a 32-bit fixed-point number. The first 16
 bits are the number of Hertz, from 0 to 65,535, and
 the last 8 bits are the fractional part, giving a reso-
 lution of better than 0.000016 Hz. Receipt of a
 Hertz-frequency message overwrites the previous
 pitch message and vice versa; mixing the two
 kinds of messages is discouraged.

 Loudness

 The loudness parameter corresponds to our subjec-
 tive impression of intensity. The units of loudness
 are musical dynamic markings; the interpretations
 of loudness are given in Table 9.

 Loudness is influenced not only by amplitude,
 but also by the temporal and spectral characteris-
 tics of the sound (Moore 1989; Pierce 1992). Per-
 forming musicians are usually quite skilled in
 trading off the various acoustic parameters that
 contribute to the perception of loudness. For ex-
 ample, they are able to adjust a bright oboe note to
 be the same musical dynamic or loudness as a mel-
 low French horn tone. The key idea behind the
 MPDL loudness parameter is that if one sends the
 same value to notes played on different instru-
 ments, they will sound at the same subjective level.
 For the loudness parameter to function properly,
 the various instruments on a given synthesizer
 must be carefully matched throughout their pitch
 and dynamic ranges so that a given loudness value
 consistently produces the same musical dynamic.

 Admittedly, as loudness is defined in terms of a
 subjective impression, there will be some differ-
 ences of opinion among different listeners. What
 we are asking for is a good approximation to

 Table 9. Interpretations of MPDL Loudness Values

 MPDL Loudness Value (Hex) Musical Dynamic

 0000 pppp
 1000 ppp
 2000 pp
 4000 p
 6000 mp
 8000 mf

 A000 f

 C000 ff

 E000 fff

 FFFF ffff

 matched loudnesses. Good voicing practice on
 MIDI synthesizers already points in this general
 direction in that different voices are adjusted so
 that a given MIDI velocity produces comparable
 loudness impressions.

 Amplitude

 Amplitude describes the overall gain of a sound.
 Increasing it is like turning up the level on a mix-
 ing board. Changing a sound's amplitude does not
 change its timbre. We might describe here the re-
 sult of changing the amplitude of instrument tim-
 bres already adjusted for loudness. High amplitude
 with low loudness on a piano sound would give
 the effect of a pianist playing very softly through a
 loud amplification system. Conversely, low ampli-
 tude with high loudness would sound like some-
 one banging hard on a piano with the sound played
 very quietly through speakers.

 Even/Odd Harmonic Balance

 Most pitched sounds can be thought of as a collec-
 tion of harmonics or overtones, which are sine
 waves spaced equally in frequency. The first har-
 monic is defined to be at the fundamental fre-
 quency, the second harmonic at twice the
 fundamental frequency, the third harmonic at
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 three times, etc. (Pierce [1992] contains a good ex-
 planation of this.) The even/odd harmonic bal-
 ance parameter is a measure of the overall
 amplitude of the first, third, fifth, etc., harmonics
 versus the overall amplitude of the second, fourth,
 sixth, etc. Listening to only the odd harmonics of a
 tone gives a sound something like a square wave;
 listening to only the even harmonics sounds some-
 what similar to a note played an octave higher
 with the same spectrum.

 This may seem like a strange parameter, but it
 is actually quite meaningful. Many acoustic musi-
 cal instruments have different balances of odd and

 even harmonics, and this balance can fluctuate
 dramatically over the time course of the note. This
 even/odd balance and its variation over time have
 potent effects on tone quality (Krimphoff,
 McAdams, and Winsberg 1994). For example, the
 timbral difference that comes from picking a gui-
 tar at different points on the string has a lot to do
 with this balance.

 Most synthesis algorithms make it easy to ma-
 nipulate this balance. In physical modeling syn-
 thesis, one can make models of open and closed
 tubes or strings plucked or bowed at various criti-
 cal points along the string. Frequency modulation
 (FM) synthesis provides a natural mechanism by
 mixing simple FM patches with differing carrier-
 to-modulator ratios. Waveshaping synthesis has its
 odd and even distortion function components, and
 additive synthesis affords direct control over the
 spectral content. Even subtractive synthesis with
 poles and zeros allows for tight control over the
 even/odd balance (Smith 1993).

 Pitched/Unpitched Balance

 Many sounds can be thought of as containing a
 pitched portion and an unpitched or noise portion
 (Serra and Smith 1990). The sound of a piano, for
 example, consists of a "thud" made by the sound of
 the hammer hitting the string, along with the
 pitched sound of the vibrating strings. The pitched/
 unpitched balance parameter measures the relative
 volume of these two portions of a tone.

 Inharmonicity

 Most pitched musical sounds are harmonic or
 nearly harmonic; that is, the partial frequencies are
 nearly exact integer multiples of the fundamental.
 For some instruments, however, these ratios are in-
 exact. Pianos, bells, tympani, and other instru-
 ments have partials whose frequencies are not
 always integer multiples of the fundamental and
 are sometimes nowhere near integer multiples.

 The inharmonicity parameter describes the
 amount that partials deviate from perfect
 harmonicity. Inharmonicity is signed; zero, the
 center value, means "the usual inharmonicity of
 the sound." As there are many ways to produce a
 deviation from the harmonic series, the interpreta-
 tion of this parameter may vary when it is non-
 zero. Some synthesizers might interpret negative
 inharmonicity to mean "more perfectly harmonic
 than the original sound" and positive inharmon-
 icity to mean more inharmonic. Others might in-
 terpret negative inharmonicity as "squeeze,"
 causing the partial frequencies to be spaced closer
 together than usual, with positive inharmonicity
 as "stretch," making the partial frequencies spaced
 farther apart than usual. Other synthesizers might
 take the absolute value of this parameter, ignoring
 the sign.

 Controlling a Note's Position in Space

 A sound's position in 3-D space can be described
 in either rectangular or polar form. For rectangular
 form, there are three pan variables: left/right, up/
 down, and front/back. A value of hexadecimal 00
 means "panned all the way to one direction,"
 which would be left, up, or front. Hexadecimal FF
 means "panned all the way to the other direction,"
 and hexadecimal 80 means "center." Synthesizers
 should implement equal energy panning.

 For polar coordinates, there is spatialization,
 which describes the distance of the produced
 sound from the listener and the direction from

 which the sound comes. Psychoacousticians have
 noted that human spatial perception is described
 by separate mechanisms for angular orientation
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 and distance (Blauert 1982), so spatialization is
 perceptually more meaningful than pan. The azi-
 muth is the angle between the sound source and
 "backward," in a horizontal plane. Hexadecimal
 0000 means "from behind," 4000 means "to the
 left," 8000 is "directly ahead," and C000 is "to the
 right." The elevation is the remaining dimension
 in polar coordinates, going from hexadecimal
 0000, meaning "down," to 8000 for "on the same
 level," to FFFF for "up."

 Finally, there's a way to control directly the am-
 plitude that a note has out of each of the outputs
 of a ZIPI timbre module. In the most general case,
 the synthesizer has up to 256 separate outputs,
 and any note can be directed to any output with
 any volume. A particular note might be coming
 mostly out of outputs 5 and 8 but also a little bit
 out of 1, 2, and 4, for example. The multiple out-
 put levels note descriptor lets you set these ampli-
 tudes. It has 2 data bytes; the first selects one of
 the synthesizer's outputs, and the second sets a
 level for the given sound at that output.

 ZIPI controllers should not mix these three

 types of positioning information; they are meant
 to be three separate systems to specify the same
 thing. (That is to say, the low-level effect of pan or
 spatialization messages will be to control how
 much of each sound comes out of each of the

 synthesizer's outputs.)

 Program Change

 Program change determines which program or pre-
 set the synthesizer should use as an instrument-
 trumpet, bagpipes, timpani, etc. Patch 0, the
 default, is defined to be silence. Presets 1 through
 127 should follow the General MIDI assignments
 (MMA 1991). Because the program is specified by
 two bytes (giving 65,536 possible values), the de-
 fault set can be largely expanded while keeping a
 large segment free for arbitrary use. This message
 might cause a synthesizer to choose a set of
 sample files, load FM synthesis parameters, or do
 anything else.

 It is expected that synthesizers will have some
 restrictions on the use of this parameter. For ex-

 ample, because each active patch will probably
 take up a certain amount of memory, processing
 power, or other resources, there might be a maxi-
 mum number of different patches that can be se-
 lected at once. Also, it might take a certain
 amount of time to set up a new timbre, so this
 message should be sent before the new timbre ac-
 tually has to sound.

 There are two reasonable behaviors for a pro-
 gram change message with regard to the timbre of
 the notes sounding at the time the message is re-
 ceived. The program change immediately message
 requests that all currently sounding notes change
 their program to the new one. The program
 change future notes message requests that cur-
 rently sounding notes retain their programs but
 that newly articulated notes use the new program.
 For example, if note 3 of some instrument is
 sounding a flute and that instrument receives a
 program change future notes message to trumpet,
 note 3 will continue to play a flute until it is re-
 leased. When note 3 receives another trigger mes-
 sage, it will sound as a trumpet.

 Controlling Timbre

 Though timbre is a complex and subjective at-
 tribute of musical tones, there are some aspects of
 timbre about which there is considerable agree-
 ment among both musicians and psychoacousti-
 cians (Risset and Wessel in press). We have chosen
 to specify these more agreed-on aspects of timbre
 in MPDL. They are brightness, roughness, and at-
 tack character.

 The impression we have of a tone's brightness
 corresponds strongly to the amount of high-fre-
 quency content in the spectrum of the sound. One
 good measure of this is the "spectral centroid,"
 which is the average frequency of the components
 of a sound, weighted by amplitude. At a given
 pitch and loudness, an oboe sounds brighter than a
 French horn, and a look at the spectrum of each
 tone shows the oboe to have more high-frequency
 components than the French horn. Computing the
 spectral centroid would show the oboe to have a
 higher value than the French horn. Different syn-
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 thesis algorithms employ different procedures to
 manipulate a tone's brightness, but almost all pro-
 vide a rather direct path to control this feature. In
 FM, increasing the modulation index increases the
 high-frequency content. Moving the cutoff fre-
 quency of a low-pass filter upward has a similar ef-
 fect. With additive synthesis, detailed control of
 the spectral envelope is provided by direct specifi-
 cation of the amplitudes of the partials.

 Roughness has a direct intuitive meaning. Low
 values would correspond to very smooth tones,
 whereas high values would be rough. Roughness
 might, for example, correspond to overblow on a
 saxophone. A considerable body of psychoacous-
 tics research shows it to be related to amplitude
 fluctuations in the tone's envelope. When the en-
 velope of a tone fluctuates at a rate of 25 to 75 Hz
 and the depth of this amplitude fluctuation ap-
 proaches 10 percent of the overall amplitude, the
 sound quality becomes very rough. Beats among
 partials of a complex tone can produce such fluc-
 tuations and give a roughness to the sound. As
 with other timbral parameters, there are a variety
 of ways to implement roughness control in differ-
 ent synthesis algorithms.

 Attack character describes, intuitively, how
 strong of an attack a note should have. As a first
 approximation, it might correspond to the attack
 rate in a traditional attack-decay-sustain-release
 envelope. It might also correspond to a louder
 maximum volume value during the attack, a
 noisier attack, a brighter attack, etc. The value for
 this parameter is "sampled" at a note's trigger
 time; whatever value this parameter has when a
 note is triggered specifies the attack character for
 the note. Changing attack character in the middle
 of a note does not require the synthesizer to
 change anything about that note.

 Moving in a Timbre Space

 A timbre space (Wessel 1985) is a geometric model
 wherein different sound qualities or timbres are
 represented as points. Similar sounding timbres
 are proximate, and dissimilar ones are distant from
 one another. A timbre space is a fairly general

 model for representing the important perceptual
 relationships among different timbres and provides
 an intuitive control scheme based on interpola-
 tion. Timbral control is exercised by making tra-
 jectories in the space.

 MPDL provides for up to 3-D timbre spaces. For
 higher-dimensioned timbre spaces, it is always pos-
 sible to use MPDL's undefined note descriptors.

 The timbre space x, y, and z coordinate controls
 are like other continuous controller note descrip-
 tors. The contents of the space and the scheme for
 interpolation are part of the patch that is selected
 by the program change note descriptor.

 Higher-Order Messages

 MPDL provides for modulation messages. Vibrato
 is an example of pitch modulation, in which the
 pitch of a note varies around the central pitch of
 the note. You can think of the vibrato as a func-

 tion of time (e.g., a triangle or sine wave) modify-
 ing a default value (i.e., the underlying pitch that
 the vibrato is around). In the MPDL, modulation
 means that an additive offset or a multiplicative
 scale factor can be applied to a parameter value as
 a function of time. Any parameter, not just pitch,
 can vary.

 It would be possible to modulate any parameter
 explicitly by sending a stream of explicit param-
 eter values. For example, a good ZIPI violin would
 have fine-grained enough pitch detection to notice
 the vibrato played by the musician and would send
 it to a ZIPI synthesizer as a series of very accurate
 pitches all close to a central value.

 On the other hand, consider a computer program
 playing a symphony on a collection of ZIPI timbre
 modules. Individually specifying the vibrato of
 each stringed instrument via frequent updates of
 the pitch parameter would be impractical in terms
 of the amount of data transmitted. Instead, the
 MPDL has a way to specify a table or function to
 give values for a parameter over time. A single
 message says, for example, "start a triangle-wave-
 shaped modulation of the pitch parameter with
 depth 10 cents and frequency 6 Hz." After that
 message is sent, the receiving device computes the
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 Table 10. MPDL Modulation Functions

 Number Function

 0 No modulation (i.e., f(t) = constant)
 1 Sine wave

 2 Square wave
 3 Saw-tooth wave

 4 Triangle wave
 5 Random

 6-255 User-defined tables

 Table 11. MPDL Segment Functions

 Number Function

 0 Linear

 1 Exponential concave
 2 Exponential convex
 3 S-shaped (e.g., sigmoid or logistic)
 4-255 User-defined tables

 subsequent values of that parameter with no addi-
 tional ZIPI messages required. Furthermore, be-
 cause the depth and frequency of a modulation are
 MPDL parameters like any other, they can be up-
 dated by a stream of control values.
 Segments provide a similar high-level control

 but have semantics more like that of decrescendo.

 With segments, one can say, for example, "start an
 exponential decay of loudness that will go to pia-
 nissimo in 1.6 sec." Here, what is specified is a pa-
 rameter (loudness), a target value (pianissimo), a
 time to reach that target (1.6 sec), and a shape for
 the function to use on the way to that value (expo-
 nential).

 Modulation is for signed indefinite repeating
 functions moving back and forth around a center
 value; the possible modulation functions are given
 in Table 10. Segments are for functions with a
 "goal"; they are used to get from one parameter
 value to another in a set amount of time. The pos-
 sible segment functions are given in Table 11.

 Synthesizer manufacturers may implement
 these functions in a variety of ways as long as the
 functions behave as specified. (Except for "ran-

 Table 12. Format of Modulation Information Block

 Message

 Byte No. Contents

 1 Note descriptor ID of parameter being
 modulated

 2 Which function (from Table 10)
 3 + 4 Modulation rate, from -255 to 255 Hz,

 with .008 Hz resolution

 5 + 6 Modulation depth
 7 + 8 Loop begin point
 9 + 10 Loop end point

 dom," these functions could be computed by table
 lookup from a 256 by 1-byte table, sample values
 for which will be made available.)

 There should also be user-settable tables that

 can be loaded with any values over the network.
 Tables can contain 1-, 2-, 3-, or 4-byte numbers
 and must have a size that is a power of 2. Tables
 should be able to be at least 256-byte by 1-byte,
 but synthesizer manufacturers are encouraged to
 provide larger ones. Synthesizers are encouraged to
 have as many user-settable tables as possible. Syn-
 thesizers should interpolate the values in these
 tables when necessary.

 To modulate a note descriptor, you must specify
 six things. The MPDL's modulation info block
 message consists of the values for these six param-
 eters, all in a single message. The format of this
 message is shown in Table 12.

 When the modulation rate is negative, it means
 that the synthesizer is to read backward through
 the table (or the equivalent if the function is
 implemented in a manner other than a table). This
 is useful for changing the shape of a sawtooth
 wave, for example.

 The loop begin and end points specify which
 portion of the table is read through during the
 course of modulation. Typically, they will specify
 the entire table, but they can be used, for example,
 to alter the duty cycle of a square wave.

 Instead of sending a new modulation info block,
 you can send a modulation rate or modulation
 depth message to specify the rate or depth of the
 modulation for a particular note descriptor with-
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 out updating any of the other parameters.
 To send your own modulation table as an MPDL

 message, use a modulation table message. The first
 data byte is the number of the table you are set-
 ting, which should not conflict with any of the pre-
 defined functions. The second byte gives the size of
 the values in the table, in bytes, e.g., 1, 2, or 4. The
 remaining data bytes are the actual contents of the
 table. (Because MPDL note descriptors include
 their own lengths, the size of a transmitted table is
 unambiguous.) It does not matter what note ad-
 dress a modulation table message is sent to.

 Function zero, "no modulation," stops modula-
 tion of a given parameter, freeing all resources
 used for the modulation. ZIPI controllers should

 explicitly turn off modulation of a parameter
 rather than just setting the depth to zero, so that
 the synthesizer will be able to free these resources.

 Modulation scales whatever other changes hap-
 pen to a particular parameter, using the same com-
 bining rule as with messages sent to various levels
 of the address space hierarchy (see below). Expo-
 nential loudness decay on a piano sample will
 scale the natural exponential decay from the real
 piano. Imposing sinusoidal vibrato on a patch with
 built-in vibrato will simply combine through.
 Therefore, users who want to modulate pitch ex-
 plicitly should probably turn off their synthesizer's
 built-in vibrato. (Of course, if the vibrato is part of
 a sample, this is not so easy.)

 The segment info block message gives all of the
 parameters necessary to apply a segment to a pa-
 rameter, as shown in Table 13. The starting value
 for the segment is not specified. Whatever value
 the given parameter currently has is the start
 point. This makes it much easier to chain seg-
 ments together. If you would like the value of the
 given parameter to jump to a new value and then
 go gradually to a second value, just precede the
 segment info block message with an explicit value
 for that parameter.

 The function begin and end points are like the loop
 begin and end points for modulation; they specify a
 portion of the function to use. The target value
 must be a legal value for the given note descriptor;
 the byte length depends on the note descriptor.

 The segment chaining byte indicates how the

 Table 13. Format of Segment Information Block
 Message

 Byte No. Contents

 1 Note descriptor ID of parameter being
 manipulated

 2 Which function (from Table 11)
 3 Segment chaining byte
 4 + 5 Time to reach desired value, in msec
 6 + 7 Function begin point
 8 + 9 Function end point
 10-n Target value

 given segment fits in with other segments. If the
 value is 0, it means that this segment should over-
 ride any other segments that are affecting the
 given parameter for the given address, "taking
 over" control of that parameter. If the value is 1, it
 means that the synthesizer should put this seg-
 ment at the end of a queue of segments for this pa-
 rameter, to take effect after the current segment
 finishes. This allows complex envelopes to be
 built out of these segments.
 The segment table allows you to specify your

 own table for use by a segment. Its syntax is ex-
 actly like that of the modulation table message.
 The segment mechanism is exactly equivalent

 to sending a stream of values for a parameter, so
 the old value of that parameter is overwritten with
 values produced by the segment, and when the
 segment is done, the last value produced by the
 segment is the current value of that parameter.
 What happens when an explicit value is set for the
 parameter while a segment is still running? That
 segment (and all segments in the queue) termi-
 nate, and the parameter gets the explicitly set
 value. In other words, sending a parameter change
 message is equivalent to killing a segment.

 Housekeeping

 Allocation priority describes the importance of a
 note in case a synthesizer runs out of resources and
 has to choose a note to turn off. As an example,
 important melodic notes might have a higher prior-
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 ity than sustaining inner voices in thick chords. In
 MIDI, there is no way to tell the synthesizer which
 notes are important, so MIDI synthesizers typically
 just turn off the oldest sounding note, which is not
 always desired (Loy 1985).

 Zero is the default priority for a note, but send-
 ing any message to a note with zero priority auto-
 matically increases that note's priority to one.
 Setting a note's priority to zero means "reset." If
 the note is sounding, receipt of a zero priority si-
 lences it immediately. It also resets all of the pa-
 rameters associated with the note, as if no
 message had ever been sent to the note. This al-
 lows a synthesizer to deallocate the memory used
 to remember parameter values that had been sent
 to that note. Therefore, devices that send MPDL
 information, such as controllers and sequencers,
 should send zero values for allocation priority
 when they determine that a note's parameters will
 no longer need to be stored.

 Setting an instrument's priority to zero resets
 the entire instrument; all of the notes inside the
 instrument shut off, all of the parameters associ-
 ated with the instrument are reset, and all of the
 parameters associated with all of the notes inside
 the instrument are reset. Likewise, allocation pri-
 ority of zero for a family shuts off all notes in all
 instruments of the family, resets all parameters
 associated with that family, and resets all param-
 eters of all instruments and notes inside the

 family.
 New address is not a message addressed to a

 note; it is just a way to use ZIPI bandwidth more
 efficiently. Imagine that you would like to update
 certain timbral parameters for a whole group of
 notes. For example, a ZIPI guitar might provide
 continuous information about the pitch, loudness,
 and brightness of each of the six strings. One way
 to do this would be to send six ZIPI packets, one
 for each of the strings. However, this is wasteful of
 network bandwidth because each separate ZIPI
 packet has 7 bytes of overhead.

 It would be better to use the new address mes-

 sage. The MPDL portion of a ZIPI message must
 start with an address to which further note de-
 scriptors apply. However, if one of the note de-
 scriptors is "new address," it specifies a different

 address to which subsequent note descriptors ap-
 ply. For example, for the packet shown in Figure 4,
 the pitch and pan messages are for note 1 of instru-
 ment 3 of family 1, while the amplitude message
 is for note 2 of instrument 2 of family 1, and the
 brightness message is for instrument 1 of family 1.

 Overwrite has to do with the interaction of the

 three levels of the address hierarchy. See the sec-
 tion below, "How the Levels Interact," for an ex-
 planation of this message.

 Querying a Synthesizer

 Because ZIPI communication can always be two-
 way, there is a mechanism for asking questions of
 a synthesizer. The query message asks some ques-
 tion; it is a request for the synthesizer to respond
 with a query response message answering the
 question.

 The first data byte of the query message is the
 question ID, as given in Table 14. The remaining
 data bytes qualify the question. For example, for
 question 4 ("Do you respond to the given note de-
 scriptor?") there is one additional data byte, a note
 descriptor ID. (We also rely on the data link layer
 to include the network address of the querying de-
 vice as the return address for the response.)

 The first byte of the query response message is
 the ID of the question being answered, and the
 next bytes are the qualifying data that were asked
 in the question. The remaining bytes are the ac-
 tual response to the question. For example, a se-
 quencer program might ask a synthesizer whether
 note 2 of instrument 1 of family 1 is sounding. It
 would select the given address as the address of an
 MPDL packet, then include a query note descrip-
 tor. The first data byte would be 2 ("What's the
 combined value of this MPDL parameter for the
 given note?"), and the second data byte would be 1
 (the note descriptor ID for articulation).

 The synthesizer's response would first select
 note 2 of instrument 1 of family 1 as the address,
 then include a query response message. The data
 bytes of the query response message would be 2
 (the question ID), 1 (the note descriptor ID for ar-
 ticulation), and then something like 11000000 (an
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 Figure 4. Example of a
 MPDL packet with "new
 address" message.

 Note Pitch Pan New Amplitude New Brightness
 Address F#5 25% to Address half normal Address twice
 note 1, the left note 2, inst 1, normal
 inst 3, inst 2, family 1
 family 1 family 1

 Table 14. MPDL Query Question IDs

 ID Meaning

 1 What is the value of this MPDL parameter at
 the given level of the address space?

 2 What is the combined value of this MPDL pa-
 rameter for the given note?

 3 Please send me a menu of all patch names.
 4 Do you respond to the given note descriptor?
 5 How many voices of polyphony do you have?
 6 .How many voices of polyphony do you have

 left?

 Undefined

 255 (Indicates that the next two bytes specify the
 question ID)

 articulation value for "trigger") or 00000000 (an
 articulation value for "release").

 Comments

 The comment note descriptor's data bytes are
 ASCII characters; they have no meaning to a syn-
 thesizer. In recorded files of MPDL control infor-

 mation (see Appendix B), one might want to add
 comments to certain note descriptors, such as
 "Start of second movement." For these comments

 to be incorporated consistently with the other
 messages, they are part of the MPDL itself. (This
 implies that when an MPDL file is transmitted via
 ZIPI, the comments will remain intact.)

 Time Tags

 No network can provide instantaneous transmis-
 sion of information. In ZIPI, network latency (the
 amount of time it takes a packet to be delivered)

 will be very small under normal conditions, usu-
 ally in the range of 0.5 to 5 msec. Variability in
 network latency, sometimes called "jitter," can be
 worse than the latency itself if music is involved,
 however. It is less annoying to play a synthesizer
 that delays every attack by exactly 10 msec than
 one that delays every attack by a random amount
 of time between 3 and 9 msec (Moore 1988.)

 Therefore, the MPDL has a way to impose a
 fixed minimum delay on each packet. If it arrives
 earlier than expected, the receiving synthesizer
 can wait a short amount of time before carrying
 out the instructions in packet. (Anderson and
 Kuivila [1986] discuss this principle, but in the
 context of algorithmic composition rather than
 networking.) To accomplish this, there is a way to
 put a time.tag in each MPDL packet. The time tag
 note descriptor indicates the exact time that the
 packet applies to, according to the sender's clock.
 The desired minimum latency note descriptor
 tells a ZIPI device what minimum latency to im-
 pose on all time-tagged network packets.

 What does the receiving device do with this in-
 formation? For now, let us assume that the receiv-
 ing device has its own clock, which has been
 synchronized very closely to the sender's clock.
 (ZIPI's data link layer can do this synchroniza-
 tion.) The receiving device can compare an incom-
 ing message's time stamp to the current value of
 its own clock to see how much delay has occurred
 already. If this is less than the requested minimum
 latency, the receiving device simply buffers the
 message for the appropriate amount of time until
 the minimum latency has been reached.
 (Dannenberg [1989] gives a variety of efficient al-
 gorithms for this.) If the delay already incurred is
 greater than the requested minimum, the message
 is already too late, so the receiving device should
 deal with it immediately.

 What if the two clocks are not synchronized?
 For example, if the MPDL runs over FDDI or
 Ethernet, no system-wide clock synchronization
 will be provided. In that case, there are still algo-
 rithms to impose a minimum latency on network
 packets, although they are more complicated and
 slightly less effective.

 These time tags are useful in other situations
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 Figure 5. A musician con-
 trolling a synthesizer.

 Figure 6. A musician con-
 trolling a synthesizer: in-
 strument providing the
 mapping function.

 Figure 7. A musician con-
 trolling a synthesizer:
 mapping function done
 elsewhere.

 Musician Measurements Mapping Synth Synth
 and of Musician's Function Control

 Instrument Gestures Signals

 Controller ZIPI Synth

 Musician Measurements Mapping Synth Synth
 and of Musician's Function Control

 Instrument Gestures Signals

 Figure 6

 Controller ZIPI Computer ZIPI Synth

 Musician Measurements Mapping Synth Synth
 and of Musician's Function Control

 Instrument Gestures Signals

 Figure 7

 besides real-time control of a synthesizer. For ex-
 ample, take the case of recording into a ZIPI se-
 quencer. MIDI sequencers must record the time
 that each message was received, in order to store
 timing information in the recorded file. The time
 that the sequencer receives the information is the
 time that it was played, plus some network delay.
 In ZIPI, if a controller time tags outgoing mes-
 sages, the network delay will have no effect on the
 recorded sequence.

 Sequencer playback benefits from time tags also.
 If the sequencer program uses the time stamps
 stored in the file and requests a sufficiently large
 minimum delay, all of the delays incurred by the
 sequencer, including disk latency, processing time,
 and network delay, can be eliminated as well.

 As another example, imagine the data from
 some ZIPI controller being fed into a computer,
 which applies some transformation to the data and
 then gives it to a synthesizer. The computer pro-
 gram does not have to wait for a fixed latency be-
 fore processing each controller message; it can
 start manipulating the data as soon as it arrives,
 but if it preserves the time stamps produced by the
 controller, rather than producing new ones, the jit-
 ter introduced by the transformation process can
 be eliminated at the synthesis end.

 Time stamps are 4 bytes, using 50-tsec units,
 giving a range of 2.5 days expressible in an MPDL
 time stamp. The desired minimum latency note
 descriptor has the same data format.

 Controller Measurements

 Real-time control of an electronic musical instru-
 ment involves three stages: measuring the

 musician's gestures-which key was struck, how
 much air pressure was used, where the violinist's
 fingers were on the fingerboard, etc.; deciding how
 these gestures will translate into the electronic
 sounds produced; and synthesizing a sound. Figure
 5 demonstrates these stages. In the MPDL, we
 draw a distinction between the first arrow, "mea-
 surements of musician's gestures," and the second
 arrow, "synthesizer control signals." All of the pa-
 rameters listed in Table 2 above are in the second
 category; they are descriptions of sound that tell a
 synthesizer what to do.

 Typically, ZIPI controllers will provide both the
 measurements of the gestures and a way to map
 those gestures onto parameters required to pro-
 duce a sound. For example, a ZIPI violin might
 measure the bow's distance from the bridge and
 use it to determine brightness. That would divide
 the above picture according to Figure 6. In this
 setup, the ZIPI instrument sends synthesizer con-
 trol parameters, such as the ones described above.
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 Table 15. Controller Measurement Parameters

 Size ID (Hex) Meaning

 1 3f Key velocity
 1 3e Key number
 2 7f Key pressure
 2 7e Pitch-bend wheel

 2 7d Mod wheel 1

 2 7c Mod wheel 2

 2 7b Mod wheel 3

 1 3d Switch pedal 1 (sustain)
 1 3c Switch pedal 2 (soft pedal)
 1 3b Switch pedal 3
 1 3a Switch pedal 4
 2 7a Continuous pedal 1 (volume)
 2 79 Continuous pedal 2
 2 78 Continuous pedal 3
 2 77 Continuous pedal 4

 1 39 Pick/bow velocity (signed)
 1 38 Pick pressure
 1 37 Pick/bow position
 2 76 Fret/fingerboard position
 1 36 Fret/fingerboard pressure

 Size ID (Hex) Meaning

 1 35 Wind flow or pressure (breath controller)
 1 34 Embouchure (bite)
 2 75 Wind controller keypads
 1 33 Lip pressure
 2 74 Lip frequency (buzz frequency for brass)

 1 32 Drum head striking point X position
 (rectangular coordinates)

 1 31 Drum head striking point Y position
 (rectangular coordinates)

 1 30 Drum head striking point distance
 from center (polar form)

 1 2f Drum head striking point angle from
 center (polar form)

 2 73 X position in space
 2 72 Y position in space
 2 71 Z position in space
 2 70 Velocity in X dimension
 2 6f Velocity in Y dimension
 2 6e Velocity in Z dimension
 2 6d Acceleration in X dimension

 2 6c Acceleration in Y dimension

 2 6b Acceleration in Z dimension

 Musicians will not always want to use the map-
 ping capabilities provided by their controller, how-
 ever. For example, some people will want to write
 their own computer programs, e.g., in the Max lan-
 guage (Puckette 1991), to determine complex map-
 pings. One might want to control the loudnesses
 of four families by finger position on the neck of a
 ZIPI violin. To support user-defined mappings, we
 recommend that ZIPI controllers be able to send

 their raw physical measurements directly, without
 mapping them onto synthesizer control param-
 eters. In other words, it should be possible to turn
 off the software in the controller that is mapping
 the physical gestures into control information,
 sending the measurements of those gestures as
 uninterpreted data. That would divide the picture
 as shown in Figure 7. The user interfaces of ZIPI
 controllers should provide a way to switch be-
 tween these two modes; sometimes the controller

 should do the mapping itself, and sometimes the
 controller should send out the "raw" data.

 Controller measurements are just another kind
 of note descriptor, listed in Table 15. Note that
 these measurements take up the higher ID num-
 bers, synthesizer control parameters take up the
 lower ID numbers, and the middle numbers are un-
 defined. (As with the note descriptors for synthe-
 sizer control, we expect to define a few more and
 leave most of them free for future specification.)

 Note that not all ZIPI controllers will work by
 physically measuring a musician's gestures. An-
 other class of ZIPI controllers consists of acoustic

 instruments whose sound output is measured and
 analyzed by a computer and converted into control
 information. In this kind of instrument, for ex-
 ample, a real-time pitch tracker would examine
 the sound produced by a flute and convert it to
 MPDL pitch messages. Digital signal analysis
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 could be used to compute the spectral centroid of
 the flute's sound, which would produce MPDL
 brightness messages. In this case, the measure-
 ments of the musician's gestures are done with the
 same musical control parameters that the mapping
 function produces to control a synthesizer. (In this
 case, however, the identity function is a perfectly
 good mapping function; it will cause the synthe-
 sizer to mimic timbrally what the musician is
 playing, which will probably be the most com-
 monly desired situation.)

 How the Levels Interact

 What happens if you send an amplitude of 1 to a
 note, then an amplitude of 10 to the instrument
 containing that note, and then an amplitude of 100
 to the family containing that note? What is the ac-
 tual amplitude of the sound produced?

 There are four different ways to combine param-
 eter values passed to different levels of the hierar-
 chy. Each parameter uses one of these four rules.
 They are "and," "multiply," "add," and "over-
 write." The "Combine" column in the tables of

 note descriptors (Tables 2 through 6) tells which of
 these four rules each parameter uses. Only articula-
 tion uses the "and" rule, which is described below.

 Most parameters use the "multiply" rule, mean-
 ing that each level of the hierarchy (notes, instru-
 ments, and families) stores its most recent value
 for the parameter, and the actual value that comes
 out is the product of these three numbers. Ampli-
 tude is an example of a parameter with this rule. If
 two notes of an instrument have amplitudes of 20
 and 10, they will have a relative amplitude ratio of
 2:1, no matter how high or low the instrument's
 amplitude gets.

 Note that what are being multiplied are scale
 factors for a base value and that the base value de-

 pends on the particular patch being played on the
 synthesizer. A flugelhorn will naturally be less
 bright than an oboe, so the midscale brightness
 value for a flugelhorn will produce a much less
 bright sound than the midscale brightness value
 for an oboe.

 The "add" rule is just like the "multiply" rule

 except that the three values for the parameter are
 added together instead of multiplied together. Co-
 ordinates in a timbre space are combined in the
 MPDL with this rule. The combining rule for
 pitch is a special case of the "add" rule; pitch is
 taken as an offset from middle C, and the offsets
 accumulate additively. If a family receives a pitch
 message of hexadecimal 7F00, which would be
 middle C#, the effect will be to transpose every-
 thing played by that family up a half step.

 The last rule is "overwrite." For these param-
 eters, the instrument and family do not store their
 own values for the parameter. Instead, a message
 sent to an instrument or family overwrites the val-
 ues of that parameter for each active note of the in-
 strument or family. Program change is a parameter
 with this rule. Because there is no easy way to com-
 bine three synthesizer programs into a single patch,
 a program change message received by a family sets
 the program of all the notes of that family.

 The "And" Rule for Articulation

 The name of this rule comes from Boolean logic.
 In this context, it means that a note only sounds if
 it has been triggered at the note level, the instru-
 ment level, and the family level. By default, every-
 thing is triggered at the family and instrument
 levels, so sending a trigger message to any note
 turns on that note. That is the normal case that
 people will use most of the time.

 It is possible to turn off all of the notes in a fam-
 ily just by sending a release message to a family. If
 this happens, the previously sounding notes still
 remember that they are turned on at the note and
 instrument levels. Therefore, if you retrigger the
 family, those notes will sound again.

 Here is an example of how to take advantage of
 this. First, send a release message to an instru-
 ment, preventing any notes from sounding on that
 instrument. Then, send pitch and trigger messages
 to a group of notes in that instrument to form a
 chord. Those notes do not sound yet because the
 instrument is switched off. Finally, you can send a
 trigger message to the instrument, which will trig-
 ger all of the notes of that instrument, playing the
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 chord you set up earlier. Now you can turn the
 chord on and off by sending articulation messages
 to the instrument. If you want to add or delete
 notes from the chord, send articulation messages
 at the note level.

 Sending a Message to All Families

 Sending a message to the "all families" address is
 an abbreviation for sending the message repeatedly
 to families 1 through 63. It is not a fourth level of
 the hierarchy in the sense of storing yet another
 parameter value that must be added or multiplied
 through. Instead, it changes the values stored for
 each of the 63 families.

 Overwriting a Large Group of Values

 Usually, the multiply or add rule does what one
 would want; it makes sense to have the oboes
 louder than the flutes by the same relative amount
 no matter how quiet or loud the wind section gets.
 Occasionally, however, the overwrite rule is de-
 sired even for parameters that typically use the
 multiply or add rules. For example, suppose all of
 the instruments in a family are playing different
 pitches, but now you want them to play in unison.
 If you send a pitch message to the family, it will
 transpose all of the instruments of the family,
 leaving their relative pitches the same. Instead,
 you want a way to say "individually set the pitch
 of each note of each instrument in this family to
 middle C."

 The "overwrite" note descriptor handles cases
 like this. Its data bytes consist of a note descriptor
 ID, which specifies a parameter to be overwritten,
 and some data for that parameter, which specifies
 a new value for it. If you send overwrite to a fam-
 ily, it sets the values for every instrument in that
 family, throwing away each instrument's old value
 for the parameter. If you send an overwrite mes-
 sage to an instrument, it sets the values for each
 note in that instrument. If you send an overwrite
 message to a family and, as the first data byte, re-
 peat the ID for overwrite, the next data byte gives

 a parameter that should be reset for every note of
 every instrument of the family.

 Not in This Layer

 It is important to mention some of the informa-
 tion that will be present in ZIPI's lower-level net-
 work layers and in application layers other than
 the MPDL.

 There will be separate application layers for
 sample dumps, patch dumps, and raw binary data,
 which can be used analogously to MIDI's "system-
 exclusive" messages, sending data that does not fit
 the MPDL.

 ZIPI's data link layer will provide a way for all
 of the devices on a ZIPI network to synchronize
 their clocks to within 50 [tsec in order to provide
 a common time base to the time stamp messages
 described above. Strictly, systemwide clock syn-
 chronization is not required to benefit from time-
 tagged data. There are algorithms to reduce
 network delay jitter even if the sending and receiv-
 ing devices have different time bases, but imple-
 mentations of the MPDL over the ZIPI data link

 layer will have the advantage of synchronized sys-
 tem clocks.

 There is a way, via the data link layer, to request
 that certain packets be confirmed upon receipt to
 ensure that they arrive intact. Any packet sent by
 the MPDL layer can request this confirmation
 from the data link layer. In this manner, highly
 critical messages such as "all notes off" can be
 guaranteed to arrive.

 A lower network layer provides a way for ZIPI
 devices to identify their characteristics to other
 devices on the network, to query devices about
 their characteristics, and to look for devices with
 certain characteristics. These characteristics in-

 clude instrument name, manufacturer, possible
 ZIPI speeds, etc.

 ZIPI's data link layer provides a way to send a
 packet to all devices on the network and a way for
 a device to listen to all packets on the network, re-
 gardless of the device for which the packet is in-
 tended. Both of these features are available for
 MPDL data.
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 Figure 8. Note descriptor
 byte format.

 A separate application layer for machine control
 will handle issues of synchronization (complying
 with SMPTE and other standards) and sequencer
 control.

 There will be an application layer for MIDI mes-
 sages, carried over a ZIPI network.

 There will be an application layer for error mes-
 sages. ZIPI devices with limited user interfaces
 can send ASCII-encoded error messages, which
 will be picked up and displayed to the user by an-
 other device, such as a computer.

 ID Data

 (1 byte) (any number of bytes)
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 Appendix A: ZIPI MPDL Byte Format

 In ZIPI's current low-level protocol, there are 7
 bytes of overhead in each ZIPI packet that are not
 part of the application layer. (The first 3 bytes say
 "this is a new ZIPI packet," the fourth byte is the
 network address of the device for which the packet
 is intended, and the fifth byte says "this packet
 contains application layer information." At the
 end of the packet are two more bytes for the CRC
 error detection checksum.) It is important that one
 of these bytes selects a particular ZIPI device by
 number so that a ZIPI device is not interrupted by
 packets that are intended for other devices.

 The first byte of the application layer data indi-
 cates the application layer to which the given
 packet applies. If the first 4 bits are 0000 (i.e., if
 the number represented by the byte is less than
 16), it means that the packet is for the Music Pa-
 rameter Description Language, regardless of the
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 Figure 9. Typical ZIPI
 MPDL packet.

 Figure 10. Bit format of
 MPDL note address.

 Header MPDL Data

 SDLC Network Control 0000 Note Note Note Note CRC

 flags Address Byte Address Descriptor Descriptor Descriptor Checksum
 (3 bytes) (1 byte) (1 byte) (4 bits) (20 bits) (any size) (any size) (any size) (2 bytes)

 Figure 9

 value of the next 4 bits. The other 240 possible 1-
 byte values indicate different application layers.

 The remainder of the first byte, plus the next 2
 bytes, make up a 20-bit note address. The format
 of these 20 bits is described below.

 After the note address is selected, a packet con-
 sists of any number of note descriptors. A note de-
 scriptor consists of a 1-byte ID (as given in Tables
 2 through 6 and 15) and some number of data
 bytes. (This is similar to a MIDI message; what
 MIDI calls "status byte" we call "ID") See Figure 8
 for an illustration of this.

 A packet can contain multiple note descriptors
 to cut down on network overhead; multiple param-
 eters can be updated in a single ZIPI MPDL packet
 while only incurring the 7-byte overhead once. Fur-
 thermore, with the "new address" message de-
 scribed above, a single ZIPI MPDL packet can
 contain note descriptors for an arbitrary number of
 different addresses. Figure 9 shows the structure of
 a ZIPI MPDL packet, including the 7 overhead
 bytes required for the lower network layers.

 Byte Format of ZIPI MPDL Addresses

 The 20-bit address is interpreted as a 6-bit family, a
 7-bit instrument, and a 7-bit note, as shown in Fig-
 ure 10. For example, the binary address 000111
 0011001 0010010 means that the information in the

 packet is addressed to note 18 (binary 10010) of in-
 strument 25 (binary 11001) of family 7 (binary 111).

 Note 0 of any instrument means "the entire in-
 strument," so the address 000111 0011001
 0000000 means "instrument 25 of family 7." Like-
 wise, instrument 0 of any family means "the en-
 tire family," so the address 000111 0000000
 0000000 means "family 7." (If the instrument bits

 Family Instrument Note
 (6 bits) (7 bits) (7 bits)

 Figure 10

 are zero, it does not matter what the note bits are;
 any address whose first 13 bits are 000111 0000000
 means family 7.) Finally, for messages that affect
 the entire address space, family zero means "all
 families." As mentioned above, this is just an ab-
 breviation for a message sent to each of the 63
 families. If the first 6 bits of an address are zero, it
 does not matter what the other 14 bits are.

 The new address message has 3 data bytes, but
 MPDL addresses are only 20 bits. So the high-order
 4 bits of the first byte must be 0000, to be consis-
 tent with the 0000 at the beginning of MPDL por-
 tion of a ZIPI packet.

 Note Descriptor Length

 The high-order 2 bits of the note descriptor ID say
 how many data bytes the note descriptor has, ac-
 cording to Table 16. Thus, there are 64 note de-
 scriptors that have 1 data byte, 64 note descriptors
 that have 2 data bytes, etc. Note descriptors that
 only require data bytes (e.g., new address) have IDs
 that begin with binary 10. These note descriptors
 actually have 4 data bytes; the fourth is simply ig-
 nored. (So the 4 bytes for new address are 0000,
 followed by the 20-bit address, followed by 8 more
 bits to be ignored.)

 When the high-order bits are binary 11 (i.e.,
 "other"), the message has more than 4 data bytes.
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 Figure 11. Byte format for
 note descriptors with
 "other" length.

 Figure 12. Example of a
 note descriptor with
 "other" length.

 Figure 13. Complete
 MPDL packet-Articulat-
 ing a C Major Triad.

 ID Length Data
 llxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx...

 Figure 11

 ID Length Data
 11001010 00000000 00000101 00000001 00000010 00000011 00000100 00000101

 Figure 12

 Note Address II Note Descriptor Note Descriptor
 Family IInstrument Note ID: Loudness Data: midscale ID: Pitch Data: middle C
 000001 0000001 0000001 01000001 10000000 00000000 01000000 01111001 00000000

 Note Descriptor Note Descriptor

 ID: Articulation Data: trigger ID: New Address Data: 1.1.2

 00000001 11000000 10000010 000001 0000001 0000010

 Note Descriptor Note Descriptor Note Descriptor
 ID: Loudness Data: Under mid ID: Pitch Data: Middle E ID: Articulation Data: trigger
 01000001 01110000 00000000 01000000 10000001 00000000 00000001 11000000

 Note Descriptor Note Descriptor
 ID: New Address Data: 1.1.3 ID: Loudness Data: Over mid
 10000010 000001 0000001 0000011 01000001 10010000 00000000

 Note Descriptor Note Descriptor

 ID: Pitch Data: Middle G ID: Articulation Data: trigger
 01000000 10000111 00000000 00000001 11000000

 Figure 13
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 Figure 14. MPDL file
 format.

 Time stamp Byte count MPDL Packet
 (4 bytes) (2 bytes) App ID Address Note Note Note

 (0000) (20 bits) descriptor descriptor descriptor

 Table 16. Number of Data Bytes of Note Descrip-
 tors, Based on ID

 High-Order Bits of ID Length

 00 1 byte
 01 2 bytes
 10 4 bytes
 11 Other

 In this case, the 2 bytes after the note descriptor
 ID are not data bytes; instead they form a 16-bit
 unsigned integer that tells the number of data
 bytes. Figure 11 shows this pictorially. Figure 12
 shows an example. Because the note descriptor be-
 gins with "11," the length is given by the next 2
 bytes. The second and third bytes form the num-
 ber 5, meaning that there are 5 data bytes, for a to-
 tal of 8 bytes altogether in the note descriptor. The
 5 data bytes are decimal 1, 2, 3, 4, and 5.

 Complete Example

 Figure 13 shows every single byte of the MPDL
 portion of a typical ZIPI packet. This packet corre-
 sponds to playing a close-voiced root position C
 major triad on a keyboard, with all three notes be-
 ing sent simultaneously.

 Appendix B: ZIPI MPDL File Format

 Files containing ZIPI MPDL data are logically se-
 quences of MPDL frames. The file must also in-
 clude a time stamp for each frame; these time
 stamps have the same format as MPDL time
 stamps (an unsigned 4-byte integer, in units of 50
 [sec). The file must also include the number of
 bytes of each frame. (Remember that there can be
 multiple note descriptors in a single MPDL
 packet; we know the length of the MPDL data
 only because the lower network levels know when
 the entire packet ends.) This count is an unsigned
 2-byte integer.
 A ZIPI MPDL file thus consists of an arbitrary
 number of repetitions of (1) a 4-byte time tag; (2) a
 2-byte count; and (3) an MPDL packet consisting
 of the given number of data bytes. Figure 14 dem-
 onstrates this format pictorially.
 We have intentionally used the same format for
 MPDL file time tags as for the MPDL time tag
 note descriptor; this makes it trivial to convert
 sequences of time-tagged MPDL packets into
 MPDL files. In this case, there is no reason to
 store the time tag note descriptor in the file be-
 cause that information would be redundant.

 When storing non-time-tagged MPDL data into a
 file, the process creating the file will have to sup-
 ply its own time stamps.

 McMillen, Wessel, and Wright 73

This content downloaded from 162.233.200.40 on Mon, 10 Apr 2017 04:47:48 UTC
All use subject to http://about.jstor.org/terms


	Contents
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73

	Issue Table of Contents
	Computer Music Journal, Vol. 18, No. 4 (Winter, 1994), pp. 1-128
	Front Matter [pp. 2-4]
	About This Issue [p. 1]
	Editor's Notes: What Is Composition? [pp. 5-6]
	Letters
	What Is Composition? [p. 7]
	Why Is Good Electroacoustic Music So Good? Why Is Bad Electroacoustic Music So Bad? [pp. 7-8]
	Electronic Resources for Computer Music [p. 8]
	A Note on Constant-Gain Digital Resonators [pp. 8-10]

	Announcements [pp. 11-14]
	News [pp. 15-18]
	Jean-Jacques Perrey and the Ondioline [pp. 19-25]
	Composition and Performance in the 1990s
	Computer Music and the Post-Modern: A Case of Schizophrenia [pp. 26-34]
	Using a Digital Synthesis Language in Composition [pp. 35-46]

	The ZIPI Music Interface Language
	ZIPI: Origins and Motivations [pp. 47-51]
	The ZIPI Music Parameter Description Language [pp. 52-73]
	A Summary of the ZIPI Network [pp. 74-80]
	Examples of ZIPI Applications [pp. 81-85]
	A Comparison of MIDI and ZIPI [pp. 86-91]
	Answers to Frequently Asked Questions about ZIPI [pp. 92-96]

	Reviews
	Events
	Review: Journées d'Informatique Musicale (JIM '94) [pp. 97-98]
	Review: National Association of Music Merchants Convention and Expo, Anaheim, California, January 1994 [pp. 98-100]

	Publications
	Review: untitled [pp. 100-101]
	Review: untitled [pp. 101-104]
	Review: untitled [pp. 104-106]
	Review: untitled [pp. 106-107]

	Recordings
	Review: untitled [pp. 107-110]
	Review: untitled [pp. 110-111]

	Products
	Review: Mark of the Unicorn Multiport MIDI Interface and Processor for PCs [pp. 111-113]
	Review: Sonitech SPIRIT-30/ISA Application Accelerator: A Signal-Processing Board for IBM-PC and Compatibles, and IC-100-2 A/D and D/A Stereo Converter [pp. 113-118]


	Product Announcements [pp. 119-127]
	Back Matter [pp. 128-128]



