
Soft Computing for Real-Time Control of Musical Processes

Michael A. Lee and David Wessel
Center for New Music and Audio Technologies

University of California
Berkeley, CA 94720

5 10 643 9990
{ lee,wessel } @cnmat.berkeley.edu

http://www.cs.berkeley.edu/-leem and http://www.cnmat.berkeley.edu

ABSTRACT

In this paper, we present soft computing tools and
techniques aimed at realizing musical instruments
that learn. Specifically we explore applications of
neural network and fuzzy logic techniques to the
design of instruments that form highly personalized
relationships with their users through self-adapta-
tion. We demonstrate techniques for adapting sensor
arrays and techniques for realizing highly expres-
sive real-time sound synthesis algorithms.

1. INTRODUCTION

A musical instrument can be viewed as a tranducer
that translates a musician’s physical gestures into a
sonic result. Effective use of this channel requires
that the musician master the protocol of the instru-

spend a great deal of effort exploring and adapting
to the capabilities of an instrument through practice
and study. In fact, musicians often speak of a rather
special and very personal relationship with the
instrument. While it is possible for instrumentalists
to physically adapt their instrument to the particu-
liarities of their playing style (i.e., by choosing the
mouthpiece, bridge, or string guage), a radical mod-
ification can be prohibitively expensive or compro-
mise the integrity of the instrument.

In this work, we leverage from recent advances in
soft computing techniques that have been demon-
strated to be effective for the identification and con-
trol of nonlinear systems to realize adaptive musical
instruments Ell]. Our goal is to realize techniques
that foster efficient and expressive communication
of musical ideas.

ment. Although the protocol can generally remain
similar between instruments of the same family, the
protocol for a particular instrument can differ in
subtle, but distinct ways from that of another instru-
ment. It is well known that a musicians will often

2. BACKGROUND

A General Instrument Architecture
Figure 1 presents a systems description of a com-

Physical Interface
I Human Performer -; I Instrument -I

Controller Generative
Algorithm

Perception

Figure 1. A generalized human performer/musical instrument system.

2748 0-7803-2559-1/9§ $4.00 0 1995 IEEE

http://cnmat.berkeley.edu/publications/soft-computing-real-time-control-musical-processes

mailto:cnmat.berkeley.edu
http://www.cs.berkeley.edu/-leem
http://www.cnmat.berkeley.edu
http://cnmat.berkeley.edu/publications/soft-computing-real-time-control-musical-processes

puter-based musical instrument and its performer.
The figure decomposes the instrument into three
subsystems: the gestural interface, the controller,
and the generative or synthesis process. The ges-
tural interface provides the physical sensing mecha-
nism that captures the performer's gestures. The
controller is responsible for mapping from gesture
space onto parameters of the underlying generative
algorithm. The generative algorithm is the process
that generates the sound or patterns of sound. It is
worth noting here that with such computer based
instruments, musicians can produce and control pat-
terns of sound rather that just single notes as is most
often the case with traditional acoustic musical
instruments.

The musician evaluates the match between his
intention, that is, the sound or musical result he
would like to produce, and the actual result that was
produced. Admittedly in traditional instruments, be
they electronic or acoustic, most of the adaptation
goes on in the human performer. Changes are made
in the instrument but they are most often made by
respecifying the controller mapping in an off-line
manner.

One of our objectives in this work is to push more of
the adaptive character this performer-instrument
relationship into the instrument itself. We shall con-
centrate on the design of the controller.

Soft Computing

Neural networks, fuzzy systems, and neuro-fuzzy
systems are natural candidates for acting as the
adaptive element in an adaptive interface, because
of their learning and generalization properties.
Using them as adaptive elements in a user interface
may provide techniques that give novices quick
access to the underlying technology of a system and
yet allow experts to develop virtuosity. The inter-
face would initially be able to deal with a user's
imprecision and yet have sufficient flexibility to
accommodate the user as he develops both his abil-
ity to produce discriminatory input gestures and to
articulate system demands. To facilitate our experi-
ments, we have developed a real-time interactive
fuzzy reasoning system and neural network simula-
tor for the MAX real-time music programming lan-
guage.

Features of our environment include real-time

graphics display of membership functions and neu-
ral network activation levels and weights, interac-
tive real-time tuning of membership functions, and
objects for handling real-time input/output from
external sensor devices such as data-gloves or infra-
red spatial locators. Although MAX was originally
intended for musical applications, it is not limited to
them. MAX'S underlying real-time scheduler makes
MAX an ideal environment for studying non-musi-
cal real-time control applications as well as musical
applications.

3. SYSTEM ENVIRONMENT

This section introduces the MAX real-time music
programming environment and introduces our neu-
ral and fuzzy systems tools. We give details on how
the systems fit into the MAX environment and how
to use them.

MAX

MAX is a widely available real-time music pro-
gramming language that runs on Macintosh[B]. It is
a graphical language in that programs are written by
instantiating computational objects and then graphi-
cally connecting them. MAX was originally
intended to address the needs of the computer music
community by providing a real-time scheduling
environment and an interface to the world of MIDI
(musical instrument digital interface). MIDI is an
international and industrial standard protocol devel-
oped and refined by a consortium of musical instru-
ment manufacturers that allows communication of
the instruments with computers and other instru-
ments manufactured by different companies.

A major strength of the MAX environment is the
ability to extend the language by adding external
objects written in C . This facility gives the user the
power to create objects that may be more efficiently
computed in C or to create objects that talk to other
external devices such as high-bandwidth gesture
sensing devices or networking devices. The specifi-
cation for external objects is well defined and new
external objects transparently integrate into the
environment.

It is through this external object interface that we
have implemented a neural network simulator and a
fuzzy reasoning system that function within the
MAX environment. The network nature of these

2749

two computational paradigms fit well within the
framework of the MAX environment. The next two
subsections discuss each of the two systems in
detail.

we have also added objects that communicate with
data acquisition cards and network communication
devices. Once data is inside the MAX environment,
it is treated the same regardless of whether it origi-
nated from a MIDI controller or another source.

MAXNet
4. APPLICATIONS

MAXNet is a multilayer feedforward network simu-
lator that can also simulate limited recurrent neural
network architectures and implements the classic
back-propagation leaming algorithm[2]. The user
can specify the number of input, output, and hidden
units and the functions, either linear or sigmoid, that
each computes. When a MAXNet object is instanti-
ated a dialog box appears that allows the user to
specify these and back-propagation leaming param-
eters. Embedding a neural network system into a
MAX patch is as easy as drawing a line between
two objects.

MAXNet also has the option to graphically display
the state of the networks activation levels and
weight values. The weights are color coded accord-
ing to their magnitude and the activation level is
represented by the size of a white dot in the middle
of each neuron. Because MAX has a library of user
interface objects, such as sliders and dials, investi-
gating the network behavior given some input state
can be done interactively and in real-time.

MAXFuz

MAXFuz is an object that can perform fuzzy rea-
soning within the MAX environment. Currently the
membership functions are limited to trapezoidal
shapes, however, extending the object to support
other membership function types is straightforward.
Our fuzzy system implementation in MAX consists
of a collection of objects; fuzzy variables, fuzzy
sets, and conventional or TSK fuzzy rules. As each
fuzzy variable, fuzzy set, and fuzzy rule are added
to the system, they are automatically wired into the
fuzzy knowledge-base.

Gesture Sensing Devices

As previously mentioned, MIDI data from commer-
cially available controllers, such as MIDI guitars,
keyboards, and violins can be read directly into the
MAX environment using built in MIDI objects. To
experiment with alternate gesture sensing devices,

Prior to electronic and computer instrumentation,
the control interface of a musical instrument was,
with the exception of keyboard instruments, directly
related to the acoustic properties of the instrument.
Musicians bowed or plucked strings or excited air
columns by blowing. To some degree, computer
instrumentation separates us from the physical con-
straints of acoustic instruments by allowing us to
decouple the physical gestures used to control an
instrument from the sound production process. With
this capability, we can realize instruments with cus-
tom interfaces suited to the specifications of a par-
ticular musician.

Although the notion of a customizable interface
yields an extremely flexible system, accurately
obtaining a musician‘s specification manually may
be extremely tedious and inefficient. The manual
customization approach becomes even more expen-
sive as one considers building an interface for more
than one musician. Consequently, a trainable user
interface technique would be advantageous. From a
functional standpoint, the interface serves as a map-
ping from user intentions to control actions for the
underlying device. For this reason, we feel the auto-
matic mapping capabilities of neural networks and
fuzzy systems are well suited for our application.

A Glove Interface

One ongoing project is exploring non-traditional
gesture input devices. One such device developed
by Laetitia Sonami is a sensing glove, which can be
used to control either a synthesis or note generating
algorithm. This “Lady’s Glove” privileges the
hand’s capability of producing a rich set of precise
and repeatable gestures.

The glove is able to sense hand postures using a
combination of resistive strip and Hall effect sen-
sors. The resistive strip on each finger measures the
degree of bend of the whole finger; individual joint
angles are not measured. In addition, the distance
between each finger and thumb is measured by hall

2750

Wrist Middle
I $ 5 0 , 1

Index Ring
1M 1LV

80
,m

60

M 40

al 1..
9 0

-20

-40

-50

Z o
-50

-1w

-lYI -80
2 6 8 12 2 6 8 1: 10

Time x 10’ Time ” 10‘

Figure 2. Wrist, and finger sensor outputs for a typical performance of the Lady’s Glove. Each plot shows the
outputs of the two sensors associated with each appendage with the upper and lower traces representing for-
ward and backward wrist bend and tip and bottom finger joint bend.

effect sensors. A sonar range sensor is also used to
determine the distance between the two hands and
the distance to a foot. The sensor measures can be
mapped to any number of the generative processes’s
parameters, such as internote timing in a note gener-
ator, reverb time in a signal processing algorithm, or
parameters that control the course of a melodic pro-
cess.

The sensors are wired to a custom device, called the
Sensorlab, developed at STEIM in Amsterdam. This
device digitizes the sensor values and translates
them into a MIDI data stream. There unit itself con-
tains a microprocessor, which can be programmed
with the use of an external computer. The programs
can specify the MIDVsensor mapping and provide a
limited means for specifying scaling and gain func-
tions. Figure 2 shows sensor outputs sampled at
20msec during a typical performance. In this figure,
the traces for one the two sensors associated with
the wrist and each finger are inverted for readability.

As part of our initial study of the glove’s move-
ments, we performed a Principal Components Anal-
ysis on the input data. This analysis verified our
hypothesis that the dimension of the glove is high.
Using only the wrist and finger sensors in this analy-
sis showed that the first two components only pick
up 55% of the variance and six components are
needed to obtain 90% of the variance. In addition,
PCA on separate performances show good agree-

ment, suggesting that the data collected is consistent
(see Figure 3).

Controlling a musical processes with the glove
requires that we build a map from the glove sensor
space to the underlying parameters of the process,
which can be an arduous process. Therefore, we
propose using adaptive methods to customize the
glove to a particular performer. The basic idea is to
gather training data and then use machine learning
techniques to automatically design the mapping
function.

A straight forward approach is to use a connection-
ist network to learn to associate hand poses with the
desired control outputs. In this scenario, the training

f
2 3 4 5 6 7

Prlnclpal Comwnenf
30;

Figure 3. Results of PCA analysis on two dif-
ferent glove performances.

275 1

data is obtained by repeatedly having the user gen-
erate a pose for a particular output configuration.
For example, in the case of static poses, the system
indicates to the performer some output configura-
tion, and then takes a snapshot of the sensor read-
ings. Training algorithms, such as neural networks
or genetic algorithms can then be used to design the
controller. In [l], Fels and Hinton have successfully
demonstrated neural network architectures for con-
trolling a speech synthesizer. The system, dubbed
Glove-Talk, uses a sensor-outfitted glove as the
input to a multi-layer network that in tum controls
the parameters of a speech synthesizer.

However, special care must be taken to construct
efficient mappings; both temporal and topological
components must be considered. For example,
points that often occur adjacent in time should also
be adjacent in sensor space. Therefore, an analysis
of both spatial and temporal pattems would assist in
constructing a coherent space.

In a PCA analysis of the Lady's Glove data that
includes time lagged data (that is each sensor and its
value at the previous sample are used as inputs), we
observe that seven principal components are needed
to capture 90% of the variance (see Figure 4). How-
ever, what is interesting to note is that only nine or
ten components are needed to obtain up to 95%.

Another approach is to use other self-organizing
techniques such as Kohonen networks [lo]. The
nodes in Kohonen networks are arranged in a grid-
like neighborhoods and have a special learning rule
that attempts to preserve topology. After an example

Pnncipal Component

Figure 4. Results of PCA analysis on glove
sensor data that includes lagged sensor val-
ues.

2752

is presented, the closest node (using some distance
metric) and its active neighbors are rotated toward
the example. As time progresses, the amount of
rotation, or learning, and the active neighborhood
size are decreased. The result is a low dimensional
network, usually 2 or 3D, distributed in the space in
a manner consistent with the frequency the inputs.
Temporal adjacency information obtained from ana-
lyzing sensor traces can be used to dynamically
modify the neighborhoods according to the tempo-
ral constraints.

5. TRAINING STRATEGIES

Questions that immediately come to mind are those
regarding training harnesses and training strategies;
how do we obtain the data to train these structures.
Specialized learning algorithms such as forward
modeling[3] techniques or genetic algorithms[7] are
available learning techniques, however they require
a method for evaluating the error. Because the final
product of a musical instrument are sonic events
meant for human ears, the error should be perceptu-
ally weighted measure of the difference between the
desired and obtained sounds.

Several difficult issues concerning adaptive user
interfaces must be addressed, such as how does the
overall system performance (human and machine)
behave in an environment where both are learning.
Having the machine leam too quickly can be detri-
mental when the human has not settled on a consis-
tent mental model of what is expected.

A method for exploring the space of sonic capabili-
ties of an instrument so that the musician can have
some idea of the limitations of the instrument is
needed. We proposed that the instrument designer
initially assemble a set of trajectories which demon-
strates the system's capabilities. The musician is
then allowed to choose trajectories he would like to
mimic. Generation of additional trajectories could
be carried out randomly or by an interactive genetic
algorithm. For example, the user selects interesting
trajectories from a population of trajectories. The
selected trajectories are then allowed to recombine
and produce new trajectories. The advantage of
using a genetic algorithm approach may be that
interesting uninteresting trajectories may be avoided
and interesting ones refined quickly.

6. CONCLUSIONS AND REMARKS

In this paper we have presented our tools for study-
ing applications of soft computing to real-time con-
trol of musical processes. They consist of gesture
sensing devices like the glove, instrumentation
hardware and software that provides MIDI or other
types of data streams from the sensors, the MAX
programming environment with its real-time sched-
uling and musical orientation, a set of specialized
MAX objects that implement various soft comput-
ing paradigms like neural networks and fuzzy con-
trol systems, and some sound synthesis technologies
based on additive synthesis. The environment com-
posed of this set of tools provides a effective labora-
tory for the study of soft computing in situations,
like those provided by music, that demand hard
real-ti me performance.

Experiments with glove and other non-traditional
multidimensional controllers indicate that we can
advantageously adapt a musical instrument to the
personal requirements of a given performer.

ACKNOWLEDGMENTS

Special thanks go to Laetitia Sonami for her partici-
pation in this research. The “Lady’s Glove” control-
ler of her design was used in the experiments and in
the preparation of the video tape of demonstrations.
The authors would like to thank the CNMAT staff
for their assistance and Adrian Freed for valuable
input. The authors would also like to thank Silicon
Graphics and Gibson Western Innovation Zone Lab-
oratories.

REFERENCES

[l] Fels, S.S. and Hinton, G.E., “Glove-Talk: a neural network
interface between a data-glove and a speech synthesizer,”
IEEE Trans. on Neural Networks, No. I , Vol. 4, 1993, pp

[2] Hertz, J . Krough, A., and Palmer, R.G., Introduction to the
Theory of Neural Computation, Menlo Park, CA, Addison-
Wesley, 1991.

[3] Jordan, M. and Rumelhart, D., “Forward Models: Super-
vised Learning with a Distal Teacher,” Cognitive Science.
1992.

[4] Lee, M., Freed, A. and Wessel, D., “Neural Networks for
Simulation Classification and Parameter Estimation in Mu-
sical Instrument Control,” Proc. ofthe SPlE Con$ on Adup-
tive and Learning Systems, Orlando, FL, 1992.

[5] Lee, M. and Wessel, D., “Connectionist Models for Real-
Time Control of Synthesis and Compositional Algo-
rithms,” Proc. of the lnt. Con$ on Computer Music, San Jo-

2-8.

se, CA, 1992.
[6] Lee, M. A., Freed, A. and Wessel, D., “Real-Time Neural

Network Processing of Gestural and Acoustic Signals,”
Proc. ofthe lnt. Con5 on Computer Music, Montreal, Can-
ada, 1991.

[7] Lee, M. A. and Takagi, H., “Integrating design stages of
fuzzy systems using genetic algorithms,” Proc. E E E Int.
Con$ on Fuzzy Syslems (FUZZ-IEEE ‘93). San Francisco,

[8] Mathews, M. and Pierce, J.. Current Directions in Compur-
er Music Research, MIT Press, Cambridge,MA, 1989.

[9] Puckette, M. and Zicarelli, D., MAX - An Interactive
Graphical Programming Environment, Opcode Systems,
Palo Alto, CA, 1995.

[IO] Ritter, H., Martinetz, T., Schulten, K., Neural Computation
and Self-organizing Maps - An Introduction, Addison-
Wesley, Reading, MA, 1992.

[1 I] Roads, C. and Strawn, J., Foundations of Computer Music,
MIT Press, Cambridge,MA, 1987.

[121 Wessel, D., “Instruments that Learn, Refined Controllers,
and Source Model Loudspeakers,” Computer Music Jour-
nal, Vol. 15, No. 4, Winter 1991, MIT Press.

CA, 1993, pp.612-617.

2753

