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ABSTRACT 

In this paper, we present soft computing tools and 
techniques aimed at realizing musical instruments 
that learn. Specifically we explore applications of 
neural network and fuzzy logic techniques to the 
design of instruments that form highly personalized 
relationships with their users through self-adapta- 
tion. We demonstrate techniques for adapting sensor 
arrays and techniques for realizing highly expres- 
sive real-time sound synthesis algorithms. 

1. INTRODUCTION 

A musical instrument can be viewed as a tranducer 
that translates a musician’s physical gestures into a 
sonic result. Effective use of this channel requires 
that the musician master the protocol of the instru- 

spend a great deal of effort exploring and adapting 
to the capabilities of an instrument through practice 
and study. In fact, musicians often speak of a rather 
special and very personal relationship with the 
instrument. While it is possible for instrumentalists 
to physically adapt their instrument to the particu- 
liarities of their playing style (i.e., by choosing the 
mouthpiece, bridge, or string guage), a radical mod- 
ification can be prohibitively expensive or compro- 
mise the integrity of the instrument. 

In this work, we leverage from recent advances in 
soft computing techniques that have been demon- 
strated to be effective for the identification and con- 
trol of nonlinear systems to realize adaptive musical 
instruments Ell]. Our goal is to realize techniques 
that foster efficient and expressive communication 
of musical ideas. 

ment. Although the protocol can generally remain 
similar between instruments of the same family, the 
protocol for a particular instrument can differ in 
subtle, but distinct ways from that of another instru- 
ment. It is well known that a musicians will often 

2. BACKGROUND 

A General Instrument Architecture 
Figure 1 presents a systems description of a com- 
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Figure 1. A generalized human performer/musical instrument system. 
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puter-based musical instrument and its performer. 
The figure decomposes the instrument into three 
subsystems: the gestural interface, the controller, 
and the generative or synthesis process. The ges- 
tural interface provides the physical sensing mecha- 
nism that captures the performer's gestures. The 
controller is responsible for mapping from gesture 
space onto parameters of the underlying generative 
algorithm. The generative algorithm is the process 
that generates the sound or patterns of sound. It is 
worth noting here that with such computer based 
instruments, musicians can produce and control pat- 
terns of sound rather that just single notes as is most 
often the case with traditional acoustic musical 
instruments. 

The musician evaluates the match between his 
intention, that is, the sound or musical result he 
would like to produce, and the actual result that was 
produced. Admittedly in traditional instruments, be 
they electronic or acoustic, most of the adaptation 
goes on in the human performer. Changes are made 
in the instrument but they are most often made by 
respecifying the controller mapping in an off-line 
manner. 

One of our objectives in this work is to push more of 
the adaptive character this performer-instrument 
relationship into the instrument itself. We shall con- 
centrate on the design of the controller. 

Soft Computing 

Neural networks, fuzzy systems, and neuro-fuzzy 
systems are natural candidates for acting as the 
adaptive element in an adaptive interface, because 
of their learning and generalization properties. 
Using them as adaptive elements in a user interface 
may provide techniques that give novices quick 
access to the underlying technology of a system and 
yet allow experts to develop virtuosity. The inter- 
face would initially be able to deal with a user's 
imprecision and yet have sufficient flexibility to 
accommodate the user as he develops both his abil- 
ity to produce discriminatory input gestures and to 
articulate system demands. To facilitate our experi- 
ments, we have developed a real-time interactive 
fuzzy reasoning system and neural network simula- 
tor for the MAX real-time music programming lan- 
guage. 

Features of our environment include real-time 

graphics display of membership functions and neu- 
ral network activation levels and weights, interac- 
tive real-time tuning of membership functions, and 
objects for handling real-time input/output from 
external sensor devices such as data-gloves or infra- 
red spatial locators. Although MAX was originally 
intended for musical applications, it is not limited to 
them. MAX'S underlying real-time scheduler makes 
MAX an ideal environment for studying non-musi- 
cal real-time control applications as well as musical 
applications. 

3. SYSTEM ENVIRONMENT 

This section introduces the MAX real-time music 
programming environment and introduces our neu- 
ral and fuzzy systems tools. We give details on how 
the systems fit into the MAX environment and how 
to use them. 

MAX 

MAX is a widely available real-time music pro- 
gramming language that runs on Macintosh[B]. It is 
a graphical language in that programs are written by 
instantiating computational objects and then graphi- 
cally connecting them. MAX was originally 
intended to address the needs of the computer music 
community by providing a real-time scheduling 
environment and an interface to the world of MIDI 
(musical instrument digital interface). MIDI is an 
international and industrial standard protocol devel- 
oped and refined by a consortium of musical instru- 
ment manufacturers that allows communication of 
the instruments with computers and other instru- 
ments manufactured by different companies. 

A major strength of the MAX environment is the 
ability to extend the language by adding external 
objects written in C .  This facility gives the user the 
power to create objects that may be more efficiently 
computed in C or to create objects that talk to other 
external devices such as high-bandwidth gesture 
sensing devices or networking devices. The specifi- 
cation for external objects is well defined and new 
external objects transparently integrate into the 
environment. 

It is through this external object interface that we 
have implemented a neural network simulator and a 
fuzzy reasoning system that function within the 
MAX environment. The network nature of these 
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two computational paradigms fit well within the 
framework of the MAX environment. The next two 
subsections discuss each of the two systems in 
detail. 

we have also added objects that communicate with 
data acquisition cards and network communication 
devices. Once data is inside the MAX environment, 
it is treated the same regardless of whether it origi- 
nated from a MIDI controller or another source. 

MAXNet 
4. APPLICATIONS 

MAXNet is a multilayer feedforward network simu- 
lator that can also simulate limited recurrent neural 
network architectures and implements the classic 
back-propagation leaming algorithm[2]. The user 
can specify the number of input, output, and hidden 
units and the functions, either linear or sigmoid, that 
each computes. When a MAXNet object is instanti- 
ated a dialog box appears that allows the user to 
specify these and back-propagation leaming param- 
eters. Embedding a neural network system into a 
MAX patch is as easy as drawing a line between 
two objects. 

MAXNet also has the option to graphically display 
the state of the networks activation levels and 
weight values. The weights are color coded accord- 
ing to their magnitude and the activation level is 
represented by the size of a white dot in the middle 
of each neuron. Because MAX has a library of user 
interface objects, such as sliders and dials, investi- 
gating the network behavior given some input state 
can be done interactively and in real-time. 

MAXFuz 

MAXFuz is an object that can perform fuzzy rea- 
soning within the MAX environment. Currently the 
membership functions are limited to trapezoidal 
shapes, however, extending the object to support 
other membership function types is straightforward. 
Our fuzzy system implementation in MAX consists 
of a collection of objects; fuzzy variables, fuzzy 
sets, and conventional or TSK fuzzy rules. As each 
fuzzy variable, fuzzy set, and fuzzy rule are added 
to the system, they are automatically wired into the 
fuzzy knowledge-base. 

Gesture Sensing Devices 

As previously mentioned, MIDI data from commer- 
cially available controllers, such as MIDI guitars, 
keyboards, and violins can be read directly into the 
MAX environment using built in MIDI objects. To 
experiment with alternate gesture sensing devices, 

Prior to electronic and computer instrumentation, 
the control interface of a musical instrument was, 
with the exception of keyboard instruments, directly 
related to the acoustic properties of the instrument. 
Musicians bowed or plucked strings or excited air 
columns by blowing. To some degree, computer 
instrumentation separates us from the physical con- 
straints of acoustic instruments by allowing us to 
decouple the physical gestures used to control an 
instrument from the sound production process. With 
this capability, we can realize instruments with cus- 
tom interfaces suited to the specifications of a par- 
ticular musician. 

Although the notion of a customizable interface 
yields an extremely flexible system, accurately 
obtaining a musician‘s specification manually may 
be extremely tedious and inefficient. The manual 
customization approach becomes even more expen- 
sive as one considers building an interface for more 
than one musician. Consequently, a trainable user 
interface technique would be advantageous. From a 
functional standpoint, the interface serves as a map- 
ping from user intentions to control actions for the 
underlying device. For this reason, we feel the auto- 
matic mapping capabilities of neural networks and 
fuzzy systems are well suited for our application. 

A Glove Interface 

One ongoing project is exploring non-traditional 
gesture input devices. One such device developed 
by Laetitia Sonami is a sensing glove, which can be 
used to control either a synthesis or note generating 
algorithm. This “Lady’s Glove” privileges the 
hand’s capability of producing a rich set of precise 
and repeatable gestures. 

The glove is able to sense hand postures using a 
combination of resistive strip and Hall effect sen- 
sors. The resistive strip on each finger measures the 
degree of bend of the whole finger; individual joint 
angles are not measured. In addition, the distance 
between each finger and thumb is measured by hall 
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Figure 2. Wrist, and finger sensor outputs for a typical performance of the Lady’s Glove. Each plot shows the 
outputs of the two sensors associated with each appendage with the upper and lower traces representing for- 
ward and backward wrist bend and tip and bottom finger joint bend. 

effect sensors. A sonar range sensor is also used to 
determine the distance between the two hands and 
the distance to a foot. The sensor measures can be 
mapped to any number of the generative processes’s 
parameters, such as internote timing in a note gener- 
ator, reverb time in a signal processing algorithm, or 
parameters that control the course of a melodic pro- 
cess. 

The sensors are wired to a custom device, called the 
Sensorlab, developed at STEIM in Amsterdam. This 
device digitizes the sensor values and translates 
them into a MIDI data stream. There unit itself con- 
tains a microprocessor, which can be programmed 
with the use of an external computer. The programs 
can specify the MIDVsensor mapping and provide a 
limited means for specifying scaling and gain func- 
tions. Figure 2 shows sensor outputs sampled at 
20msec during a typical performance. In this figure, 
the traces for one the two sensors associated with 
the wrist and each finger are inverted for readability. 

As part of our initial study of the glove’s move- 
ments, we performed a Principal Components Anal- 
ysis on the input data. This analysis verified our 
hypothesis that the dimension of the glove is high. 
Using only the wrist and finger sensors in this analy- 
sis showed that the first two components only pick 
up 55% of the variance and six components are 
needed to obtain 90% of the variance. In addition, 
PCA on separate performances show good agree- 

ment, suggesting that the data collected is consistent 
(see Figure 3). 

Controlling a musical processes with the glove 
requires that we build a map from the glove sensor 
space to the underlying parameters of the process, 
which can be an arduous process. Therefore, we 
propose using adaptive methods to customize the 
glove to a particular performer. The basic idea is to 
gather training data and then use machine learning 
techniques to automatically design the mapping 
function. 

A straight forward approach is to use a connection- 
ist network to learn to associate hand poses with the 
desired control outputs. In this scenario, the training 
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Figure 3. Results of PCA analysis on two dif- 
ferent glove performances. 
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data is obtained by repeatedly having the user gen- 
erate a pose for a particular output configuration. 
For example, in the case of static poses, the system 
indicates to the performer some output configura- 
tion, and then takes a snapshot of the sensor read- 
ings. Training algorithms, such as neural networks 
or genetic algorithms can then be used to design the 
controller. In [l], Fels and Hinton have successfully 
demonstrated neural network architectures for con- 
trolling a speech synthesizer. The system, dubbed 
Glove-Talk, uses a sensor-outfitted glove as the 
input to a multi-layer network that in tum controls 
the parameters of a speech synthesizer. 

However, special care must be taken to construct 
efficient mappings; both temporal and topological 
components must be considered. For example, 
points that often occur adjacent in time should also 
be adjacent in sensor space. Therefore, an analysis 
of both spatial and temporal pattems would assist in 
constructing a coherent space. 

In a PCA analysis of the Lady's Glove data that 
includes time lagged data (that is each sensor and its 
value at the previous sample are used as inputs), we 
observe that seven principal components are needed 
to capture 90% of the variance (see Figure 4). How- 
ever, what is interesting to note is that only nine or 
ten components are needed to obtain up to 95%. 

Another approach is to use other self-organizing 
techniques such as Kohonen networks [lo]. The 
nodes in Kohonen networks are arranged in a grid- 
like neighborhoods and have a special learning rule 
that attempts to preserve topology. After an example 

Pnncipal Component 

Figure 4. Results of PCA analysis on glove 
sensor data that includes lagged sensor val- 
ues. 
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is presented, the closest node (using some distance 
metric) and its active neighbors are rotated toward 
the example. As time progresses, the amount of 
rotation, or learning, and the active neighborhood 
size are decreased. The result is a low dimensional 
network, usually 2 or 3D, distributed in the space in 
a manner consistent with the frequency the inputs. 
Temporal adjacency information obtained from ana- 
lyzing sensor traces can be used to dynamically 
modify the neighborhoods according to the tempo- 
ral constraints. 

5. TRAINING STRATEGIES 

Questions that immediately come to mind are those 
regarding training harnesses and training strategies; 
how do we obtain the data to train these structures. 
Specialized learning algorithms such as forward 
modeling[3] techniques or genetic algorithms[7] are 
available learning techniques, however they require 
a method for evaluating the error. Because the final 
product of a musical instrument are sonic events 
meant for human ears, the error should be perceptu- 
ally weighted measure of the difference between the 
desired and obtained sounds. 

Several difficult issues concerning adaptive user 
interfaces must be addressed, such as how does the 
overall system performance (human and machine) 
behave in an environment where both are learning. 
Having the machine leam too quickly can be detri- 
mental when the human has not settled on a consis- 
tent mental model of what is expected. 

A method for exploring the space of sonic capabili- 
ties of an instrument so that the musician can have 
some idea of the limitations of the instrument is 
needed. We proposed that the instrument designer 
initially assemble a set of trajectories which demon- 
strates the system's capabilities. The musician is 
then allowed to choose trajectories he would like to 
mimic. Generation of additional trajectories could 
be carried out randomly or by an interactive genetic 
algorithm. For example, the user selects interesting 
trajectories from a population of trajectories. The 
selected trajectories are then allowed to recombine 
and produce new trajectories. The advantage of 
using a genetic algorithm approach may be that 
interesting uninteresting trajectories may be avoided 
and interesting ones refined quickly. 



6. CONCLUSIONS AND REMARKS 

In this paper we have presented our tools for study- 
ing applications of soft computing to real-time con- 
trol of musical processes. They consist of gesture 
sensing devices like the glove, instrumentation 
hardware and software that provides MIDI or other 
types of data streams from the sensors, the MAX 
programming environment with its real-time sched- 
uling and musical orientation, a set of specialized 
MAX objects that implement various soft comput- 
ing paradigms like neural networks and fuzzy con- 
trol systems, and some sound synthesis technologies 
based on additive synthesis. The environment com- 
posed of this set of tools provides a effective labora- 
tory for the study of soft computing in situations, 
like those provided by music, that demand hard 
real-ti me performance. 

Experiments with glove and other non-traditional 
multidimensional controllers indicate that we can 
advantageously adapt a musical instrument to the 
personal requirements of a given performer. 
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