
IMPLEMENTATION AND APPLICATIONS OF OPEN
SOUND CONTROL TIMESTAMPS

Andy Schmeder Adrian Freed
Center for New Music and Audio Technologies

Department of Music
UC Berkeley

1750 Arch Street, Berkeley CA USA 94720
+1 510 643 9990

{andy,adrian}@cnmat.berkeley.edu

ABSTRACT

The background, purpose, and function of Open Sound
Control (OSC) timestamps is reviewed. An analysis
shows that jitter-induced noise with dispersion over the
millisecond range significantly degrades real-time high-
resolution sensor signal streams. The design of a
distributed clock synchronization and event scheduling
domain over an asynchronous network is described. A
realization of this model is presented, created using the
new micro-OSC (µOSC) hardware platform and host
software components in MaxMSP. An OSC address
schema for client-server clock synchronization is
documented. Two new objects for MaxMSP are
introduced: OSC-timetag and OSC-schedule.

1. INTRODUCTION

Since its introduction in 1997, the Open Sound Control
(OSC) protocol [http://opensoundcontrol.org] has been
successfully integrated into dozens of hardware and
software designs and used in thousands of new music
performances and installations. A quality of OSC as a
protocol is its design philosophy, which could be
paraphrased as “by musicians, for musicians”—many of
its features arose from frustrations with the state of the
art of digital instrument connectivity including
limitations such as slow transmission speed, low-bit
depth encodings, and clumsy customization
mechanisms.

The use of sensors in computer-musical instruments
requires the ability to transmit, interact with, record and
analyze time-sampled information at bandwidth and
quality sufficient to capture the full-range of
expressivity for human-scale gestures. OSC features that
support this requirement include high-resolution data
formats (e.g. floating point numbers), a high-resolution
timestamp format (based on the NTP fixed-point
representation [http://ntp.org]), and chronological discrete-
event stream semantics attached to OSC #bundle
headers.

A recent effort by the authors is the cultivation of an
online database of OSC implementations and their
capabilities [http://opensoundcontrol.org/implementations]. In
spite of general consensus that robust temporal
information is crucial for musical interfaces [7], the key
mechanism for temporal control in OSC, timestamps,
has remained elusive—incomplete or unavailable in the

majority of implementations. Explanations for the
shortcomings in timestamp support by OSC
implementations was explored by Freed [3], including
programming challenges, data-format and resolution
issues, poor operating system support for deadline
scheduling, unresolved issues related to synchronization
semantics of nested bundles, and the lack of a reference
implementation to test functional models against.

2. MOTIVATION AND TOOLS

The event visualization in Figure 1 shows a typical
input delay-distribution to a personal computer from an
attached human-input device, logged over a 250
millisecond time window. This illustrates the potential
magnitude of network-induced delay variability over the
millisecond time-scale under common conditions. The
problem of delay variability is not restricted to
asynchronous transports—even in sample-locked
isochronous transports a non-trivial delay distribution
exists. Delay and randomness are both inevitable—the
task is to manage them. For the realtime transport of
OSC packets over asynchronous networks, it is possible
to coordinate distributed streams by statistically
measuring and anticipating delay, a model for which is
described in this paper.

Figure 1: Packet arrival time compared to zero-delay.

A functional implementation of the model is based
around the recent development of an OSC-enabled open
source firmware for an embedded microprocessor,
called micro-OSC (µOSC) [6] (Pictured, Figure 2, the
supported Sparkfun “Bitwacker” [http://sparkfun.com]).
µOSC is designed to remain as small and compact as

http://cnmat.berkeley.edu/publications/implementation-and-applications-open-sound-control-timestamps

http://cnmat.berkeley.edu/publications/implementation-and-applications-open-sound-control-timestamps

possible while also supporting evolving trends in sensor
interfaces such as regulated 3.3 Volt high-resolution
sensors, mixed analog and digital multi-rate sensor
interfacing, and n > 8-bit data formats [4].

Figure 2: µOSC, an embedded microprocessor gesture-
acquisition hardware platform

µOSC exposes low-level microprocessor and

hardware controls to a host with a compact and user-
friendly OSC address schema. The class-compliant
USB-Serial interface conveniently delivers power and
data speeds of at least 1.0 Mbits per second, enabling
full OSC bundles to be used as the transport wire
format. The use of SLIP framing protocol
[http://tools.ietf.org/html/rfc1055] gives OSC the ability to be
used on any reliable serial transport.

3. JITTER-INDUCED PHASE-MODULATION
DISTORTION AT GESTURE-SIGNAL RATES

The implications of phase-modulation distortion are
well known in the audio engineering community where
picosecond clock dispersion can have a measurable
impact on 24-bit/96kHz converters. It is useful to
analyze this type of noise in the gesture-frequency
domain as well, which we specify over a range of 0-250
Hz in this discussion. In the time domain this
corresponds to a sampling rate of 500 Hz, a speed easily
realized by µOSC with current hardware capacity. A
simulation of the effect of uniform-distributed bounded
time jitter shows that effective dynamic range is reduced
by phase-modulation noise at levels where it
significantly degrades the potential bit-depth of the
sensor channel. A representative illustration of the
situation with a nominal 10 Hz carrier signal is given in
Figure 3.

Figure 3: Spectra of jitter and quantization noise

Figure 4: Maximum headroom in dB for tabulated
combinations of signal frequency (Hz) and delay
dispersion (msec) (simulated, uniformly-distributed,
integrated over 10 seconds). Bold where headroom < 8-
bits.

Timing dispersions on the order tabulated in Figure
4 may arise in contexts such as soft-realtime process
control and network datagram transport. What is
perhaps under-appreciated is that even at moderate
gesture-range frequencies, the sampling-time precision
necessary to capture a performance with high-accuracy
is well into the sub-millisecond range.

4. TRANSPORT SYNCHRONIZATION FOR
GESTURE-SIGNAL STREAMS

Suppose that devices on a network are clock-
synchronized (e.g. using NTP, IEEE1588 or another
method). Given a reliable clock, a processor can
annotate the time-of-occurance for events, and queue
events/data for future evaluation. These two functions
make possible distributed coordination of signals. Two
types of synchronization (causal and anti-causal) are
defined for use in a point-to-point network.

4.1. Forward Synchronization

A host transmitting data can synchronize to a future
point by anticipation of the one-way forward transport
delay. This is called forward synchronization [1]. It is
useful in signal distribution networks having a star
topology with the signal sources at the hub. The order
statistic of the maximum transmission delay is a robust
non-parametric technique for setting the forward time
increment.

4.2. Backward Synchronization

Output of any causal system is not admissible to
forward synchronization. Here we consider delay behind
the time-of-occurance and make adjustments so that the
delay variance is factored out and a constant latency
results. The order statistic of the maximum input delay
is useful for tuning the rescheduling goal. We call this
backward synchronization. A visualization of this
algorithm in action is depicted in Figure 5.

Figure 5: Packet evaluation time corrected to

constant-delay after backward synchronization.

5. SYNCHRONIZATION ON MICRO-OSC

The forward/backward synchronization primitives are
practical for implementation on embedded processors,
enabling µOSC to support time-stamped signal streams.
While more advanced models may include sophisticated
modes of synchronization (e.g., ad-hoc, wireless), the
mechanism described here yields significant
improvements in sensor signal conditioning.

5.1. Client-server clock synchronization

The OSC address schema shown enables a host-side
implementation of Cristian’s algorithm [2] for client-
server clock synchronization. To enable the use of the
OSC timestamp format as arguments within messages,
µOSC uses the extended type tag, “t”, for the following:

 /osc/time/accuracy
 /osc/time/precision

µOSC broadcasts these values to the host as advisory
messages for tuning the sync accuracy and precision
goals. The system builder may derive these values
from hardware datasheets and processor execution
schedule.

 /osc/time/scale
Set/get the internal scale factor mapping device
internal timer to external time.

 /osc/time/set
Set the device clock.

 /osc/time/inc
 /osc/time/dec

Apply increment/decrement adjustments by time-
interval-valued amounts to the device clock.

5.2. Implementation results

Assuming a symmetric round-trip-delay, the minimum
input and output delay from µOSC was estimated to be
on the order of 3.0 msec (see Figure 8). The clock is
then set (using /osc/time/set) to tserver + toutput-delay.
When a stable drift rate estimate is available, the scale
parameter is adjusted so that clock adjustment
increments are decreased. Continuous updates to the

drift rate and offset keep the device clock synchronized
to the host clock.

The variables affecting synchronization performance
are remote (device) clock quality, clock sync quality,
and local clock quality. Conditional sampling based on
z-score of the minimum order statistic factors out the
variance of the transport. In practice, sub-millisecond
clock-sync accuracy is easily achievable between µOSC
and a computer running MaxMSP. Figure 6 shows a
trace of this process in action, regulating the device
clock to within 0.1 msec over 3 minutes.

Figure 6: Time-trace of the adaptive clock

synchronization in action

The event rescheduling (backward synchronization)
part of the design is subject to the precision of the local
scheduler precision. The MaxMSP 4.6 scheduler under
test exhibited a clock precision of 1.0 msec
corresponding to the fastest internal tick-rate, however a
conversion directly from OSC-bundles to the MSP
signal-domain is possible to obtain the full time-
accuracy afforded by the clock synchronization.

6. STATISTICAL CHARACTERIZATION OF
DELAY PERFORMANCE

Quality control for real-time behavior of computer-
musical instruments and music-gesture protocols has
been a concern of past research. A “messy” but reliable
testing jig can be constructed for making such
measurements in the continuous signal domain, depicted
schematically here:

Figure 7: Test jig for latency measurement

This method can be difficult in practice, for example
in one case needing special hardware circuits [5] [8], or
offline microphone signal processing for peak-
estimation of transient physical-events [9]. In a clock-
synchronized domain, the use of OSC timestamps

enables greatly simplified measurement of delay-related
issues in signal quality control.

Delay in band-limited analog systems is a linear
filter, but in digital systems can take on complex
behavior when processes such as dynamic queuing and
caching strategies are active. The non-parametric
minimum and maximum order statistics are useful for
establishing expected bounds.

Figure 8: Estimated bounds on input delay for µOSC

using USB-Serial transport

As a case study in best-practices for quality control
of delay behavior, the synchronized clock on µOSC was
used to characterize the USB transport. Histograms of
these data are shown in Figure 8. An application of
these statistics is in the automatic tuning of the target
delay for backward-synchronized event rescheduling.

7. GENERAL PURPOSE TOOLS FOR TIME-
AWARE OSC STREAMS IN MAXMSP

The work described here involving time-aware
processing is enabled by two new objects for the
MaxMSP environment written by the authors that
complement the OpenSoundControl and OSC-route
objects by Matt Wright. These object and others made
free to the public are published online at
http://cnmat.berkeley.edu/downloads.

7.1. OSC-timetag

OSC-timetag provides a microsecond-resolution
interface to the system clock using the C standard
gettimeofday(). It implements mathematical operators on
timestamps (difference, scaling, comparison, derivative)
and format conversions between OSC/NTP, UNIX time,
and ISO8601 strings.

7.2. OSC-schedule

The OSC-schedule object buffers OSC bundles in a
chronologically sorted priority queue, and outputs them
to the closest approximation of event time plus target
delay in the MaxMSP scheduler. OSC-schedule makes
provisions for the user to handle out-of-band packets,
e.g. missing the scheduler deadline or having the special
“immediate” flag set.

8. CONCLUSION AND FUTURE WORK

The model and implementation shown here establishes a
foundation for an end-to-end time-aware computing
platform, and shows how phase-modulation noise can be
minimized for asynchronous signalling of gesture-range
frequencies.

This work could be furthered and improved by
exploring more sophisticated clock synchronization
methods and hardware, multi-agent network
configurations, and delay from block-buffered OSC
packet streams (e.g. file streams and database queries).
The estimations of signal transmission quality could be
refined by the incorporation of input signal density
distributions using theoretical prior probabilities and/or
gesture-signal statistics.

9. REFERENCES

[1] Brandt, Eli and Dannenberg, Roger, “Time in
Distributed Real-Time Systems” in Proceedings of
the ICMC (San Francisco, CA, USA, 1998) p.523-
526

[2] Christian, Flaviu, “Probabilistic clock
synchronization” in Distributed Computing
(Springer Berlin, 1989) p.146-158

[3] Freed, Adrian, “Towards a More Effective OSC
Time Tag Scheme”, in Proceedings of the OSC
Conference (Berkeley, CA, USA, June 30 2004)

[4] Freed, Adrian, Avizienis, Rimas and Wright,
Matthew, “Beyond 0-5V: Expanding Sensor
Integration Architectures” in Proceedings of the
Conference on New Interfaces for Musical
Expression (Paris, France, 2006)

[5] Nelson, Mark and Thom, Belinda, “A Survey of
Real-Time MIDI Performance” in Proceedings of
the Conference on New Interfaces for Musical
Expression (Hamamatsu, Japan, 2004)

[6] Schmeder, Andy and Freed, Adrian, “µOSC: The
Open Sound Control Reference Platform for
Embedded Devices” in Proceedings of the
Conference on New Interfaces for Musical
Expression (Genova, Italy, 2008)

[7] Wessel, David and Wright, Matthew, Problems and
Prospects for Intimate Musical Control of
Computers, Computer Music Journal, Volume 26,
Issue 3, 2002, p.11-22

[8] Wright, James and Brandt, Eli, “System-Level
MIDI Performance Testing” in Proceedings of the
ICMC (2001), p.318-321

[9] Wright, Matthew, Cassidy, Ryan J. and
Zbyszynski, Michael F., “Audio and Gesture
Latency Measurements on Linux and OSX”, in
Proceedings of the ICMC (Miami FL, USA, 2004)
p.423-429

