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ABSTRACT 

The background, purpose, and function of Open Sound 
Control (OSC) timestamps is reviewed. An analysis 
shows that jitter-induced noise with dispersion over the 
millisecond range significantly degrades real-time high-
resolution sensor signal streams. The design of a 
distributed clock synchronization and event scheduling 
domain over an asynchronous network is described. A 
realization of this model is presented, created using the 
new micro-OSC (µOSC) hardware platform and host 
software components in MaxMSP. An OSC address 
schema for client-server clock synchronization is 
documented. Two new objects for MaxMSP are 
introduced: OSC-timetag and OSC-schedule. 

1. INTRODUCTION

Since its introduction in 1997, the Open Sound Control 
(OSC) protocol [http://opensoundcontrol.org] has been 
successfully integrated into dozens of hardware and 
software designs and used in thousands of new music 
performances and installations. A quality of OSC as a 
protocol is its design philosophy, which could be 
paraphrased as “by musicians, for musicians”—many of 
its features arose from frustrations with the state of the 
art of digital instrument connectivity including 
limitations such as slow transmission speed, low-bit 
depth encodings, and clumsy customization 
mechanisms. 

The use of sensors in computer-musical instruments 
requires the ability to transmit, interact with, record and 
analyze time-sampled information at bandwidth and 
quality sufficient to capture the full-range of 
expressivity for human-scale gestures. OSC features that 
support this requirement include high-resolution data 
formats (e.g. floating point numbers), a high-resolution 
timestamp format (based on the NTP fixed-point 
representation [http://ntp.org]), and chronological discrete-
event stream semantics attached to OSC #bundle 
headers. 

A recent effort by the authors is the cultivation of an 
online database of OSC implementations and their 
capabilities [http://opensoundcontrol.org/implementations]. In 
spite of general consensus that robust temporal 
information is  crucial for musical interfaces [7], the key 
mechanism for temporal control in OSC, timestamps, 
has remained elusive—incomplete or unavailable in the 

majority of implementations. Explanations for the 
shortcomings in timestamp support by OSC 
implementations was explored by Freed [3], including 
programming challenges, data-format and resolution 
issues, poor operating system support for deadline 
scheduling, unresolved issues related to synchronization 
semantics of nested bundles, and the lack of a reference 
implementation to test functional models against. 

2. MOTIVATION AND TOOLS

The event visualization in Figure 1 shows a typical 
input delay-distribution to a personal computer from an 
attached human-input device, logged over a 250 
millisecond time window. This illustrates the potential 
magnitude of network-induced delay variability over the 
millisecond time-scale under common conditions. The 
problem of delay variability is not restricted to 
asynchronous transports—even in sample-locked 
isochronous transports a non-trivial delay distribution 
exists. Delay and randomness are both inevitable—the 
task is to manage them. For the realtime transport of 
OSC packets over asynchronous networks, it is possible 
to coordinate distributed streams by statistically 
measuring and anticipating delay, a model for which is 
described in this paper. 

Figure 1: Packet arrival time compared to zero-delay. 

A functional implementation of the model is based 
around the recent development of an OSC-enabled open 
source firmware for an embedded microprocessor, 
called micro-OSC (µOSC) [6] (Pictured, Figure 2, the 
supported Sparkfun “Bitwacker” [http://sparkfun.com]). 
µOSC is designed to remain as small and compact as 
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possible while also supporting evolving trends in sensor 
interfaces such as regulated 3.3 Volt high-resolution 
sensors, mixed analog and digital multi-rate sensor 
interfacing, and n > 8-bit data formats [4]. 

 

 
Figure 2: µOSC, an embedded microprocessor gesture-
acquisition hardware platform 

 
µOSC exposes low-level microprocessor and 

hardware controls to a host with a compact and user-
friendly OSC address schema. The class-compliant 
USB-Serial interface conveniently delivers power and 
data speeds of at least 1.0 Mbits per second, enabling 
full OSC bundles to be used as the transport wire 
format. The use of SLIP framing protocol 
[http://tools.ietf.org/html/rfc1055] gives OSC the ability to be 
used on any reliable serial transport. 

3. JITTER-INDUCED PHASE-MODULATION 
DISTORTION AT GESTURE-SIGNAL RATES 

The implications of phase-modulation distortion are 
well known in the audio engineering community where 
picosecond clock dispersion can have a measurable 
impact on 24-bit/96kHz converters. It is useful to 
analyze this type of noise in the gesture-frequency 
domain as well, which we specify over a range of 0-250 
Hz in this discussion. In the time domain this 
corresponds to a sampling rate of 500 Hz, a speed easily 
realized by µOSC with current hardware capacity. A 
simulation of the effect of uniform-distributed bounded 
time jitter shows that effective dynamic range is reduced 
by phase-modulation noise at levels where it 
significantly degrades the potential bit-depth of the 
sensor channel. A representative illustration of the 
situation with a nominal 10 Hz carrier signal is given in 
Figure 3. 

 

 
Figure 3: Spectra of jitter and quantization noise 
 

 
 

Figure 4: Maximum headroom in dB for tabulated 
combinations of signal frequency (Hz) and delay 
dispersion (msec) (simulated, uniformly-distributed, 
integrated over 10 seconds). Bold where headroom < 8-
bits. 
 

Timing dispersions on the order tabulated in Figure 
4 may arise in contexts such as soft-realtime process 
control and network datagram transport.  What is 
perhaps under-appreciated is that even at moderate 
gesture-range frequencies, the sampling-time precision 
necessary to capture a performance with high-accuracy 
is well into the sub-millisecond range. 

4. TRANSPORT SYNCHRONIZATION FOR 
GESTURE-SIGNAL STREAMS 

Suppose that devices on a network are clock-
synchronized (e.g. using NTP, IEEE1588 or another 
method). Given a reliable clock, a processor can 
annotate the time-of-occurance for events, and queue 
events/data for future evaluation. These two functions 
make possible distributed coordination of signals. Two 
types of synchronization (causal and anti-causal) are 
defined for use in a point-to-point network. 

4.1. Forward Synchronization 

A host transmitting data can synchronize to a future 
point by anticipation of the one-way forward transport 
delay. This is called forward synchronization [1]. It is 
useful in signal distribution networks having a star 
topology with the signal sources at the hub. The order 
statistic of the maximum transmission delay is a robust 
non-parametric technique for setting the forward time 
increment. 

4.2. Backward Synchronization 

Output of any causal system is not admissible to 
forward synchronization. Here we consider delay behind 
the time-of-occurance and make adjustments so that the 
delay variance is factored out and a constant latency 
results. The order statistic of the maximum input delay 
is useful for tuning the rescheduling goal. We call this 
backward synchronization. A visualization of this 
algorithm in action is depicted in Figure 5. 
 



  
 

 

 
Figure 5: Packet evaluation time corrected to 

constant-delay after backward synchronization. 

5. SYNCHRONIZATION ON MICRO-OSC 

The forward/backward synchronization primitives are 
practical for implementation on embedded processors, 
enabling µOSC to support time-stamped signal streams. 
While more advanced models may include sophisticated 
modes of synchronization (e.g., ad-hoc, wireless), the 
mechanism described here yields significant 
improvements in sensor signal conditioning. 

5.1. Client-server clock synchronization 

The OSC address schema shown enables a host-side 
implementation of Cristian’s algorithm [2] for client-
server clock synchronization. To enable the use of the 
OSC timestamp format as arguments within messages, 
µOSC uses the extended type tag, “t”, for the following: 

 
  /osc/time/accuracy  
  /osc/time/precision  

µOSC broadcasts these values to the host as advisory 
messages for tuning the sync accuracy and precision 
goals. The system builder may derive these values 
from hardware datasheets and processor execution 
schedule. 

  /osc/time/scale 
Set/get the internal scale factor mapping device 
internal timer to external time. 

  /osc/time/set 
Set the device clock. 

  /osc/time/inc  
  /osc/time/dec  

Apply increment/decrement adjustments by time-
interval-valued amounts to the device clock. 

5.2. Implementation results 

Assuming a symmetric round-trip-delay, the minimum 
input and output delay from µOSC was estimated to be 
on the order of 3.0 msec (see Figure 8). The clock is 
then set (using /osc/time/set) to tserver + toutput-delay. 
When a stable drift rate estimate is available, the scale 
parameter is adjusted so that clock adjustment 
increments are decreased. Continuous updates to the 

drift rate and offset keep the device clock synchronized 
to the host clock. 

The variables affecting synchronization performance 
are remote (device) clock quality, clock sync quality, 
and local clock quality. Conditional sampling based on 
z-score of the minimum order statistic factors out the 
variance of the transport. In practice, sub-millisecond 
clock-sync accuracy is easily achievable between µOSC 
and a computer running MaxMSP. Figure 6 shows a 
trace of this process in action, regulating the device 
clock to within 0.1 msec over 3 minutes. 

 

 
Figure 6: Time-trace of the adaptive clock 

synchronization in action 

The event rescheduling (backward synchronization) 
part of the design is subject to the precision of the local 
scheduler precision. The MaxMSP 4.6 scheduler under 
test exhibited a clock precision of 1.0 msec 
corresponding to the fastest internal tick-rate, however a 
conversion directly from OSC-bundles to the MSP 
signal-domain is possible to obtain the full time-
accuracy afforded by the clock synchronization. 

6. STATISTICAL CHARACTERIZATION OF 
DELAY PERFORMANCE 

Quality control for real-time behavior of computer-
musical instruments and music-gesture protocols has 
been a concern of past research. A “messy” but reliable 
testing jig can be constructed for making such 
measurements in the continuous signal domain, depicted 
schematically here: 

 
Figure 7: Test jig for latency measurement 

This method can be difficult in practice, for example 
in one case needing special hardware circuits [5] [8], or 
offline microphone signal processing for peak-
estimation of transient physical-events [9]. In a clock-
synchronized domain, the use of OSC timestamps 



  
 

 

enables greatly simplified measurement of delay-related 
issues in signal quality control.  

Delay in band-limited analog systems is a linear 
filter, but in digital systems can take on complex 
behavior when processes such as dynamic queuing and 
caching strategies are active. The non-parametric 
minimum and maximum order statistics are useful for 
establishing expected bounds. 

 
Figure 8: Estimated bounds on input delay for µOSC 

using USB-Serial transport 

As a case study in best-practices for quality control 
of delay behavior, the synchronized clock on µOSC was 
used to characterize the USB transport. Histograms of 
these data are shown in Figure 8. An application of 
these statistics is in the automatic tuning of the target 
delay for backward-synchronized event rescheduling. 

 

7. GENERAL PURPOSE TOOLS FOR TIME-
AWARE OSC STREAMS IN MAXMSP 

The work described here involving time-aware 
processing is enabled by two new objects for the 
MaxMSP environment written by the authors that 
complement the OpenSoundControl and OSC-route 
objects by Matt Wright. These object and others made 
free to the public are published online at 
http://cnmat.berkeley.edu/downloads. 

7.1. OSC-timetag 

OSC-timetag provides a microsecond-resolution 
interface to the system clock using the C standard 
gettimeofday(). It implements mathematical operators on 
timestamps (difference, scaling, comparison, derivative) 
and format conversions between OSC/NTP, UNIX time, 
and ISO8601 strings. 

7.2. OSC-schedule 

The OSC-schedule object buffers OSC bundles in a 
chronologically sorted priority queue, and outputs them 
to the closest approximation of event time plus target 
delay in the MaxMSP scheduler. OSC-schedule makes 
provisions for the user to handle out-of-band packets, 
e.g. missing the scheduler deadline or having the special 
“immediate” flag set.  

8. CONCLUSION AND FUTURE WORK 

The model and implementation shown here establishes a 
foundation for an end-to-end time-aware computing 
platform, and shows how phase-modulation noise can be 
minimized for asynchronous signalling of gesture-range 
frequencies.  

This work could be furthered and improved by 
exploring more sophisticated clock synchronization 
methods and hardware, multi-agent network 
configurations, and delay from block-buffered OSC 
packet streams (e.g. file streams and database queries). 
The estimations of signal transmission quality could be 
refined by the incorporation of input signal density 
distributions using theoretical prior probabilities and/or 
gesture-signal statistics. 
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