Recent Work on OSC
Timetags at CNMAT

Andy Schmeder
Adrian Freed

http://cnmat.berkeley.edu/research

http://cnmat.berkeley.edu/research
http://cnmat.berkeley.edu/research

What is OSC?

OSI Layer

OSI Layer #

Example

Application

Interface hardware,
audio synthesizer,
programming
language

Presentation

OSC, XML

Transport

UDP/IP, TCP/IP
+SLIP, Serial+SLIP

Hardware

Ethernet, USB, Serial

In a nutshell

OSC Message
/mixer/slider/3 f 0.25

vs. MIDI...
0x0| 0x00 0x03 0x32

<!xml version="1.0"?>
<message xmlns:xs="http://w3c.org/XMLSchema”>
<mixer>
<slider />
<slider />
<slider type="xs:float”’>0.25</slider>
</mixer>
</message>

http://w3c.org/XMLSchema
http://w3c.org/XMLSchema

OSC Bundles

OSC Bundle format: a collection of concurrent messages
and a timestamp

#bundle 2008-03-07 17:30:00.2646 Z |

/mixer/slider/l f 0.0

/mixer/slider/2 f 0.9
/mixer/slider/3 f 0.25

/mixer/slider/8 f 0.0

Brief History

1998: First use of OSC (CAST Synth, etc)
2002: OSC 1.0 publish (Wright, Freed)

2004: OSC Conference: “Timetag support
is a big problem” (Freed)

2008: micro-OSC (Schmeder, Freed)

OSC Timestamp
Format

® NTP format: 64-bit fixed point
32-bit uint, #seconds since Jan | 1900
32-bit uint, fractions of a sec

Leap Second Problem

1997-06-30 23:59:59.7 UTC -> 867715199.7 xntpd
1997-06-30 23:59:59.8 UTC -> 867715199.8 xntpd
1997-06-30 23:59:59.9 UTC -> 867715199.9 xntpd
1997-06-30 23:59:60.0 UTC -> 867715200.0 xntpd
1997-06-30 23:59:60.1 UTC -> 867715200.1 xntpd
1997-06-30 23:59:60.2 UTC -> 867715200.2 xntpd
1997-06-30 23:59:60.3 UTC -> 867715200.3 xntpd
1997-06-30 23:59:60.4 UTC -> 867715200.4 xntpd
1997-06-30 23:59:60.5 UTC -> 867715200.5 xntpd
1997-06-30 23:59:60.6 UTC -> 867715200.6 xntpd
1997-06-30 23:59:60.7 UTC -> 867715200.7 xntpd
1997-06-30 23:59:60.8 UTC -> 867715200.8 xntpd
1997-06-30 23:59:60.9 UTC -> 867715200.9 xntpd
1997-07-01 00:00:00.0 UTC -> 867715200.0 xntpd
1997-07-01 00:00:00.1 UTC -> 867715200.1 xntpd
1997-07-01 00:00:00.2 UTC -> 867715200.2 xntpd

May occur once every
6-months, depending on
Earth rotation rate
(cannot be predicted)

TAI64 Format is Better

International Atomic Time

Strictly monotonic (no leap seconds)
64-bit uint #seconds from epoch
32-bit uint #nano-seconds (TAI64N)
32-bit uint #atto-seconds (TAI64NA)
libtai (D] Bernstein)

micro-OSC

“OSC in the microcontroller”

A platform for experimentation with new
physical interfaces at CNMAT

Consideration of requirements for musical
gestures

Replace tedious error-prone programming
with on-the-fly messaging

Low cost for rapid prototyping ($25)

micro-OSC Hardware

Musical Gestures...

® High temporal precision
|-20 msec relative event onset precision,
bandlimit of 50-1000hz

depends on training, etc

® Wide dynamic range
bbbp - ffff is about 8 bits on a linear scale.

Signal Quality Issues

® |f gesture stream is inadequately sampled it
can have audible consequences, e.g.“zipper
noise”

If latency is too large it can affect
performance of rhythmic patterns

If the entire system is not sufficiently
responsive, it can inhibit virtuosity, e.g.
“boring to play”

Random delay of |10 +/- 5 msec of input
event arrivals observed on a typical
operating system

10 Hz signal at 10 bits with 0.1-2.0 msec jitter

so0 100 150 200

10 Hz carrier signal

2 msec jitter noise (—23 dB)

).1'msec jitter noise (—49 dB

1 bit qus t.Zti?\ﬂ! g€ (
________ L L A | B
\ ' I

Spectrum of noise on a |0Hz carrier
signal, simulated jitter

0.0lmsec O.lmsec 1l.msec 2.msec 4. msec
100.806 80.942 60.5853 54.4588 48.2834
89.4672 69.2973 49.5129 42.7719 37.1899
83.5256 64.1865 44.4936 37.811 32.166

77.8606 58.3905 38.2024 32.4498 25.4497
72.3401 52.0053 31.2989 25.7653 20.1786
66.1133 45.8497 25.8291 19.7408 14.3312
60.2471 39.6844 19.7202 13.546 8.26448
53.9285 33.8882 13.9203 7.90135 1.7457

Channel headroom as a function of
bandwidth (carrier frequency) vs jitter
noise (std deviation of transport delay)

BOLD = <8 bits headroom

Why Jitter Gets
lsnored

® The problem goes away at DC
® |rrelevant to pointing tasks (mouse)

® |rrelevant (mostly) to synchronously
sampled systems (audio)

Timing measurements
with micro-OSC...

[
L

CoreAudio /dev/osc

4.2 . . 3 4

py—Serial->0OSC MAX-serial—>slipOSC

Jitter Attenuation: Step
#1) Simple Clock Sync

® Synchronize clock on micro-OSC to host
gettimeofday() - 1/2 min(round-trip-delay)

® [imestamp when all data acquisition
occurred on the microcontroller

® Re-schedule messages to |/2 max(round-
trip-delay). Trade larger delay for zero
jitter.

Clock Sync (Cristian)

[time/now -- get the time
[time/set -- set time (not accurately)

[time/inc -- add/subtract increments to the clock
[time/dec

/[time/scale -- adjust scaling coefficient for internal
time to external time (drift-rate correction)

Sync Trace

Clock drift rate, msec per sec

1 1 1 " " 1
100

Clock adjustments, msec

R e S

" " " 1 " " " " 1 Pt 1L t
/ S U NV M

Clock drift adjustments

100

0.995 F

0.990 F

0.985 F

Sync accuracy
within within
0.1 msecin 3

minutes

between

MaxMSP and
micro-OSC

2 Round Trip Delay Stats

Average minimum delay Standard deviation of minimum delay
n

msec
1.15 1.2 25 . . : 0.15 . . 0.3

Average maximum delay Standard deviation of maximum delay

Y Y

n

60 F
50t
40}
0}
20}

msec
2

Recovered [iming

Other Uses of Timestamps
in micro-OSC

® (Clean and accurate way to deal with
interrupt-on-change hardware feature

® Flexibility: can’t always anticipate how long
things will take

® Better instrumentation: easy to do time
quality measurement without external

testing |ig

Synchronization
Paradigms

® Forward Sync (Brandt, Dannenberg):
Sender anticipates transport delay and
timestamps control events for future
delivery

® Backward Sync (micro-OSC):
Receiver measures transport delay and
reschedules for future delivery

OSC Timestamp
Semantic Ambiguity

Original conception was only the forward
sync mode]

Turns out in most cases the sender doesn’t
know the appropriate delay. Oops!

No method exists in OSC Bundles to
indicate which type of sync is expected.

Jitter Recovery with
Sample-Synchronous
Accuracy

Measure delay between audio sample-block
callbacks, remove jitter with a 2nd order

critically damped IIR filter

Results: Jitter drops from ~2msec to
| Ousec

A 1
sample count

system time system time

T T T T T
*dlll.dat? u 1:2 *dllil.dat? u 1:10$3 - B.82133)

TR GRS T R

Figure 5: Jitter with USB audio card Figure 6: Remaining jitter with DLL filter

® “Using a DLL to Filter Time” (F Adriaensen)

realtime objects in
MaxMSP

Interface between synchronous (audio) and
asynchronous (event) computation without
loss of timing information

Globally phase-synchronized oscillators

realtime object library

® realtime.onehz~
falling edge at start of every real second

realtime.phasor~
globally in-phase oscillator

realtime.edge~
outputs timestamped events on sighal edge
detection

realtime.sig~
output signal from timestamped events

OSC Timestamps in
Databases

Time-base queries

Database and file system queries can be
treated as transports with large jitter

Timestamps in the past can be rewritten to
current or future on warped scales to

implement playback, scrubbing (variable
rate playback)

OSCStreamDB (Schmeder 2009)

Summary

® Gesture signal quality is important for
music and audio applications

® |itter recovery is possible today with
micro-second accuracy, provided:

® Use timestamps everywhere

® Ensure timestamps are monotonic

® Recording/playback works fine with
absolute timestamps (no need to use
relative time encodings)

Unsolved Problems

® Choice, encoding, use of sync paradigms
(forward, backward).

® Practical issues of dealing with time in
programming languages (syntax, semantics).

® There is no “end-to-end” support for
time In current environments

® _.odot library (Freed, MacCallum)

