
Recent Work on OSC
Timetags at CNMAT

Andy Schmeder
Adrian Freed

http://cnmat.berkeley.edu/research

http://cnmat.berkeley.edu/research
http://cnmat.berkeley.edu/research

What is OSC?
OSI Layer OSI Layer # Example

Application 7

Interface hardware,
audio synthesizer,

programming
language

Presentation 6 OSC, XML

Transport 5, 4, 3 UDP/IP, TCP/IP
+SLIP, Serial+SLIP

Hardware 2, 1 Ethernet, USB, Serial

In a nutshell

vs. MIDI...

vs. XML...

OSC Message

<?xml version=”1.0”?>
 <message xmlns:xs=”http://w3c.org/XMLSchema”>
 <mixer>
 <slider />
 <slider />
 <slider type=”xs:float”>0.25</slider>
 </mixer>
 </message>

/mixer/slider/3 f 0.25

0x01 0x00 0x03 0x32

http://w3c.org/XMLSchema
http://w3c.org/XMLSchema

OSC Bundles

#bundle 2008-03-07 17:30:00.2646 Z [

 /mixer/slider/1 f 0.0
 /mixer/slider/2 f 0.9
 /mixer/slider/3 f 0.25
 ...
 /mixer/slider/8 f 0.0

]

OSC Bundle format: a collection of concurrent messages
and a timestamp

Brief History

• 1998: First use of OSC (CAST Synth, etc)

• 2002: OSC 1.0 publish (Wright, Freed)

• 2004: OSC Conference: “Timetag support
is a big problem” (Freed)

• 2008: micro-OSC (Schmeder, Freed)

OSC Timestamp
Format

• NTP format: 64-bit fixed point
 32-bit uint, #seconds since Jan 1 1900
 32-bit uint, fractions of a sec

Leap Second Problem

1997-06-30 23:59:59.7 UTC -> 867715199.7 xntpd
1997-06-30 23:59:59.8 UTC -> 867715199.8 xntpd
1997-06-30 23:59:59.9 UTC -> 867715199.9 xntpd
1997-06-30 23:59:60.0 UTC -> 867715200.0 xntpd
1997-06-30 23:59:60.1 UTC -> 867715200.1 xntpd
1997-06-30 23:59:60.2 UTC -> 867715200.2 xntpd
1997-06-30 23:59:60.3 UTC -> 867715200.3 xntpd
1997-06-30 23:59:60.4 UTC -> 867715200.4 xntpd
1997-06-30 23:59:60.5 UTC -> 867715200.5 xntpd
1997-06-30 23:59:60.6 UTC -> 867715200.6 xntpd
1997-06-30 23:59:60.7 UTC -> 867715200.7 xntpd
1997-06-30 23:59:60.8 UTC -> 867715200.8 xntpd
1997-06-30 23:59:60.9 UTC -> 867715200.9 xntpd
1997-07-01 00:00:00.0 UTC -> 867715200.0 xntpd
1997-07-01 00:00:00.1 UTC -> 867715200.1 xntpd
1997-07-01 00:00:00.2 UTC -> 867715200.2 xntpd

May occur once every
6-months, depending on

Earth rotation rate
(cannot be predicted)

TAI64 Format is Better

• International Atomic Time

• Strictly monotonic (no leap seconds)

• 64-bit uint #seconds from epoch

• 32-bit uint #nano-seconds (TAI64N)

• 32-bit uint #atto-seconds (TAI64NA)

• libtai (DJ Bernstein)

micro-OSC
• “OSC in the microcontroller”

• A platform for experimentation with new
physical interfaces at CNMAT

• Consideration of requirements for musical
gestures

• Replace tedious error-prone programming
with on-the-fly messaging

• Low cost for rapid prototyping ($25)

micro-OSC Hardware

Musical Gestures...

• High temporal precision
 1-20 msec relative event onset precision,
 bandlimit of 50-1000hz
 depends on training, etc

• Wide dynamic range
 pppp - ffff is about 8 bits on a linear scale.

Signal Quality Issues

• If gesture stream is inadequately sampled it
can have audible consequences, e.g. “zipper
noise”

• If latency is too large it can affect
performance of rhythmic patterns

• If the entire system is not sufficiently
responsive, it can inhibit virtuosity, e.g.
“boring to play”

0 10 20 30 40 50

0.05

0.10

0.15

0.20

Random delay of 10 +/- 5 msec of input
event arrivals observed on a typical

operating system

50 100 150 200 250
Hz

�100

�80

�60

�40

�20

dB
10 Hz signal at 10 bits with 0.1�2.0 msec jitter

10 Hz carrier signal

10 bit quantization noise ��60 dB�
0.1 msec jitter noise ��49 dB�

2 msec jitter noise ��23 dB�

Spectrum of noise on a 10Hz carrier
signal, simulated jitter

8bits =
48 dB

0.01 msec 0.1 msec 1. msec 2. msec 4. msec
0.5 Hz 100.806 80.942 60.5853 54.4588 48.2834
1. Hz 89.4672 69.2973 49.5129 42.7719 37.1899
2 Hz 83.5256 64.1865 44.4936 37.811 32.166
4 Hz 77.8606 58.3905 38.2024 32.4498 25.4497
8 Hz 72.3401 52.0053 31.2989 25.7653 20.1786
16 Hz 66.1133 45.8497 25.8291 19.7408 14.3312
32 Hz 60.2471 39.6844 19.7202 13.546 8.26448
64 Hz 53.9285 33.8882 13.9203 7.90135 1.7457

Channel headroom as a function of
bandwidth (carrier frequency) vs jitter
noise (std deviation of transport delay)

BOLD = <8 bits headroom

Why Jitter Gets
Ignored

• The problem goes away at DC

• Irrelevant to pointing tasks (mouse)

• Irrelevant (mostly) to synchronously
sampled systems (audio)

Timing measurements
with micro-OSC...

Out[48]=
3.8 4 4.2 4.4 4.6

msec

10

20

30

40

50

n
CoreAudio

2 3 4 5
msec

5

10

15

20

25

n
�dev�osc

6 8 10 12 14 16 18
msec

5

10

15

20

n
py�Serial��OSC

4 5 6 7 8
msec

5

10

15

20

25

n
MAX�serial��slipOSC

Jitter Attenuation: Step
#1) Simple Clock Sync

• Synchronize clock on micro-OSC to host
gettimeofday() - 1/2 min(round-trip-delay)

• Timestamp when all data acquisition
occurred on the microcontroller

• Re-schedule messages to 1/2 max(round-
trip-delay). Trade larger delay for zero
jitter.

Clock Sync (Cristian)

• /time/now -- get the time

• /time/set -- set time (not accurately)

• /time/inc -- add/subtract increments to the clock
/time/dec

• /time/scale -- adjust scaling coefficient for internal
time to external time (drift-rate correction)

Sync Trace

Sync accuracy
within within
0.1 msec in 3

minutes
between

MaxMSP and
micro-OSC

1/2 Round Trip Delay Stats

Recovered Timing

Other Uses of Timestamps
in micro-OSC

• Clean and accurate way to deal with
interrupt-on-change hardware feature

• Flexibility: can’t always anticipate how long
things will take

• Better instrumentation: easy to do time
quality measurement without external
testing jig

Synchronization
Paradigms

• Forward Sync (Brandt, Dannenberg):
Sender anticipates transport delay and
timestamps control events for future
delivery

• Backward Sync (micro-OSC):
Receiver measures transport delay and
reschedules for future delivery

OSC Timestamp
Semantic Ambiguity

• Original conception was only the forward
sync model

• Turns out in most cases the sender doesn’t
know the appropriate delay. Oops!

• No method exists in OSC Bundles to
indicate which type of sync is expected.

Jitter Recovery with
Sample-Synchronous

Accuracy

• Measure delay between audio sample-block
callbacks, remove jitter with a 2nd order
critically damped IIR filter

• Results: Jitter drops from ~2msec to
10usec

in Linux kernel design and implementation
have greatly reduced this variation, but it
still exist, and will remain. A typical well-
tuned system will show a small average de-
lay with some occasional peaks.

• Timer quantisation. The system timer
may have a considerable quantisation er-
ror, for example it could increment in steps
of a millisecond. When the period time is
an exact multiple of the timer step, this
will generate a constant error. In the other
case timer quantisation manifests itself as
additional jitter.

• Sample frequency errors. On most
hardware, the sample clock is not locked
in any way to the one that drives the sys-
tem timer. This means that the real sample
frequency (when measured against system
time) will not be exactly equal to the nom-
inal one, and that any mapping based on
the nominal sample frequency will show an
error.

Latency can be compensated for when we
know the driver and HW configuration. The
following sections will show that jitter, quanti-
sation, and sample frequency errors can be re-
moved as well. The only remaining error then
is the average interrupt to timer read delay. On
a system configured for audio work this should
be small, and a constant offset will remove most
of it.

2 Mapping between sample counts
and system time

Let p be the period size, F the nominal sam-
ple frequency, and T = 1/F the nominal sam-
ple period. At the start of a period i, we are
at sample n0i (this value will increase by p for
each period), and we read the system timer and
obtain t0i .

With this information, we have a mapping
between system time t and sample index n:

t = t0i + (n− n0i) ∗ T (1)
n = n0i + (t− t0i)/T (2)

Modulo some implementation details,
these two equations describe how JACK’s
frame time() function 3 operated originally.

3Names such as frame time can be quite confusing.
Is it the time of a frame, or some other time expressed
in frame units ? In this paper we’ll try to use a consis-

system time

sample count

Figure 1: Discontinuous mapping

There are some problems with this mapping,
as shown in fig.1. In this figure the grid rep-
resents nominal periods on both axes, and the
(red) dots are the points (t0i , n0i). The thin
(blue) line is the exact mapping we want. Note
that in this example the real sample frequency is
slightly lower that the nominal — the thin line
is lagging the grid as time advances. The thick
lines show what we get when using the equa-
tions above. The mapping is smooth, but only
within one period. It is certainly not continu-
ous and can even be non-monotonic. At some
points it is ambiguous or undefined.

What we want is more something like fig.2.
Here the thick lines are connected, and the map-
ping is continuous and monotonic. We will also
want to remove as much as possible of the ’wob-
bling’, i.e. obtain a straight linear mapping.

Define n1i and t1i as our estimates of the sam-
ple count and system time at the start of the
next period. Of course n1i = n0i + p, and our
best guess for t1i so far is t1i = t0i + pT .

The continuity requirement means that:

n0i = n1i−1 (3)
t0i = t1i−1 (4)

Equation (3) is already satisfied, and (4), in
practice, means that we should not try and find
t0 at the start of each period, but that we must

tent naming convention: the phrase A time of B always
means “the time of the event B, expressed on the time
scale A”.

system time

sample count

Figure 2: Continuous mapping

look ahead and find t1, and use the t1 from the
previous period as t0 in the current one.

Using these definitions, the mapping equa-
tions (1,2) above become:

Te = (t1i − t0i)/p; (5)
t = t0i + (n− n0i) ∗ Te (6)
n = n0i + (t− t0i)/Te (7)

This means that we have replaced the nomi-
nal sample period T by an estimated one, Te. As
a result of the jitter on the system timer, this Te

shows considerable variation. The following sec-
tion will show how this can be reduced, thereby
straigthening the thick line in fig.2. Note that
it will always remain at a small distance to the
right of the ideal mapping. This is the average
delay mentioned above.

3 Control loops

The problem we face when trying to remove the
timing errors is one of filtering : we want to re-
move the random fluctuations but to follow the
’average speed’ of time.

In electronics and digital signal processing
many filtering problems are solved by feedback
loops. The classical example is the Phases
Locked Loop or PLL, which enables a radio re-
ceiver to track the frequency of the signal it is
receiving even when that signal is erratic and
corrupted by much noise.

Now what is a control loop ? A good exam-
ple is what happens when you are driving and
you want to follow another car at a constant

Filter
x

y

e

Figure 3: A general control loop

distance. When you notice that the distance
increases, you will accelerate. When you come
too close, you will decrease your speed. The
thing that drives this mechanism is the differ-
ence between the distance you observe, and the
one you want to maintain — this is called the
loop error in feedback theory.

All loops operate in the same way (see fig.3):
there is some input quantity x and an output y
that tries to follow x, and y is driven in some
way by a filtered version of the error e = x −
y. To apply this to our problem, let x be the
jittering system time we are reading at the start
of each period, and then y is supposed to be a
smoothed version of the same.

In control loop theory a very important pa-
rameter is the loop order. The loop order de-
termines in which way the loop takes time into
account. For example, one way to react to a
given loop error would be to just use the value
of the error as it is, without taking into account
its history. That would be a zero-order loop.
Another way would be to increase the effect of
an error as it persists for a longer time – a first
or higher order loop will do exactly that.

More formally, the loop order is given by the
number of integration steps in the filter. What
is an integrator ? Basically a thing that outputs
an accumulated (over time) version of its input.
If xi are the inputs, then the outputs are

yi = yi−1 + xi (8)

In C this reduces to y += x; An integrator
has the interesting (for control theory) property
that when its output is in some way constrained
to remain bounded, for example because it is
part of a feedback loop, then the average value
of the input must be zero. So if there is at least
one integrator in the loop filter, and the average
speed of the input is zero, then the average loop
error must be zero as well.

Figure 4 shows the structure of a zero, first
and second order loop. In a zero-order loop we

• “Using a DLL to Filter Time” (F Adriaensen)

Figure 5: Jitter with USB audio card

// read timer and calculate loop error
e = read_timer() - t1;

// update loop
t0 = t1;
t1 += b * e + e2;
e2 += c * e;

// update sample counts
n0 = n1;
n1 += nper;

5 Some measured results

The DLL described in the previous sections can

easily reduce the system time jitter by a fac-

tor of 100. This is in particular important for

USB cards, and may also provide a solution to

the problem of finding accurate system time to

sample count mapping for networked audio.

While for most (PCI based) audio cards the

jitter is mainly determined by scheduling delays,

USB audio interfaces show and additional prob-

lem: the period timing jitter is mainly the result

of ALSA’s repackaging of the samples into pe-

riods of the requested size. In theory this jitter

should be in a range of 1ms (the USB interrupt

period), but in practice, variations in a range

of up to 4 ms are observed
4
. As an example,

fig.5, shows the loop error for the author’s USB

interface. This also shows the loop adapting to

the mean interrupt to timer read delay, wich is

quite high in this case.

Figure 6 shows the remaining jitter after the

DLL filtering. This is reduced from the original

4This probably indicates a problem with the ALSA
implementation.

Figure 6: Remaining jitter with DLL filter

± 2 ms to a range of about ± 10 µs. Most PCI

sound cards have significantly less jitter to start

with, and the filtered result will then be better

than one microsecond.

6 Acknowledgements

This paper is the synthesis of a very long dis-

cussion (by e-mail) of the author with Florian

Schmidt and Paul Davis. Many thanks to both

of them for their patience ! Florian Schmidt

wrote the code that is now part of JACK.

References

Roland E. Best. 1984. Phase-Locked Loops -
Theory, Design and Applications. McGraw-

Hill, New York.

Floyd M. Gardner. 1966. Phaselock Techniques.
John Wiley and Sons, New York.

realtime objects in
MaxMSP

• Interface between synchronous (audio) and
asynchronous (event) computation without
loss of timing information

• Globally phase-synchronized oscillators

realtime object library
• realtime.onehz~

 falling edge at start of every real second

• realtime.phasor~
 globally in-phase oscillator

• realtime.edge~
 outputs timestamped events on signal edge
detection

• realtime.sig~
 output signal from timestamped events

OSC Timestamps in
Databases

• Time-base queries

• Database and file system queries can be
treated as transports with large jitter

• Timestamps in the past can be rewritten to
current or future on warped scales to
implement playback, scrubbing (variable
rate playback)

• OSCStreamDB (Schmeder 2009)

Summary
• Gesture signal quality is important for

music and audio applications

• Jitter recovery is possible today with
micro-second accuracy, provided:

• Use timestamps everywhere

• Ensure timestamps are monotonic

• Recording/playback works fine with
absolute timestamps (no need to use
relative time encodings)

Unsolved Problems

• Choice, encoding, use of sync paradigms
(forward, backward).

• Practical issues of dealing with time in
programming languages (syntax, semantics).

• There is no “end-to-end” support for
time in current environments

• ...odot library (Freed, MacCallum)

